cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A223204 Rolling icosahedron face footprints: number of n X 3 0..19 arrays starting with 0 where 0..19 label faces of an icosahedron and every array movement to a horizontal or vertical neighbor moves across an icosahedral edge.

Original entry on oeis.org

9, 75, 657, 5763, 50553, 443451, 3889953, 34122675, 299324169, 2625672171, 23032401201, 202040266467, 1772297595801, 15546597829275, 136374785271873, 1196279871788307, 10493769275551017, 92051363736382539, 807474735076340817
Offset: 1

Views

Author

R. H. Hardin, Mar 18 2013

Keywords

Comments

Column 3 of A223209.

Examples

			Some solutions for n=3:
..0..5..0....0..5..0....0..5..7....0..1..0....0..5..9....0..5..7....0..1..4
..5..0..1....5..7..5....5..7..5....1..0..5....5..9..8....2..0..5....1..4.17
..0..5..0....9..5..9....0..5..0....4..1..0....0..5..9....0..1..0....4.17.10
Face neighbors:
0 -> 1 2 5
1 -> 0 4 6
2 -> 0 3 8
3 -> 2 4 16
4 -> 3 1 17
5 -> 0 7 9
6 -> 1 7 10
7 -> 6 5 11
8 -> 2 9 13
9 -> 8 5 14
10 -> 6 12 17
11 -> 7 12 14
12 -> 11 10 19
13 -> 8 15 16
14 -> 9 11 15
15 -> 14 13 19
16 -> 3 13 18
17 -> 4 10 18
18 -> 16 17 19
19 -> 15 18 12
		

Crossrefs

Cf. A223209.

Formula

Empirical: a(n) = 9*a(n-1) - 2*a(n-2).
Conjectures from Colin Barker, Aug 17 2018: (Start)
G.f.: 3*x*(3 - 2*x) / (1 - 9*x + 2*x^2).
a(n) = (3*2^(-1-n)*((9-sqrt(73))^n*(3+sqrt(73)) + (-3+sqrt(73))*(9+sqrt(73))^n)) / sqrt(73).
(End)

A223205 Rolling icosahedron face footprints: number of n X 4 0..19 arrays starting with 0 where 0..19 label faces of an icosahedron and every array movement to a horizontal or vertical neighbor moves across an icosahedral edge.

Original entry on oeis.org

27, 375, 5763, 90111, 1412907, 22163655, 347696019, 5454600015, 85571052219, 1342427863959, 21059839795875, 330384125138847, 5183024720307531, 81310641801813351, 1275591151342290099, 20011314009255431919
Offset: 1

Views

Author

R. H. Hardin, Mar 18 2013

Keywords

Comments

Column 4 of A223209.

Examples

			Some solutions for n=3:
..0..1..6.10....0..2..3..2....0..5..9..8....0..1..0..2....0..1..4.17
..1..0..1..6....2..3..2..3....5..9.14..9....1..6..1..0....1..0..1..4
..4..1..6.10....3..2..3.16....9.14..9..5....0..1..0..2....4..1..6..1
Face neighbors:
0 -> 1 2 5
1 -> 0 4 6
2 -> 0 3 8
3 -> 2 4 16
4 -> 3 1 17
5 -> 0 7 9
6 -> 1 7 10
7 -> 6 5 11
8 -> 2 9 13
9 -> 8 5 14
10 -> 6 12 17
11 -> 7 12 14
12 -> 11 10 19
13 -> 8 15 16
14 -> 9 11 15
15 -> 14 13 19
16 -> 3 13 18
17 -> 4 10 18
18 -> 16 17 19
19 -> 15 18 12
		

Crossrefs

Cf. A223209.

Formula

Empirical: a(n) = 19*a(n-1) - 54*a(n-2) + 32*a(n-3).
Empirical g.f.: 3*x*(9 - 46*x + 32*x^2) / (1 - 19*x + 54*x^2 - 32*x^3). - Colin Barker, Aug 17 2018

A223206 Rolling icosahedron face footprints: number of nX5 0..19 arrays starting with 0 where 0..19 label faces of an icosahedron and every array movement to a horizontal or vertical neighbor moves across an icosahedral edge.

Original entry on oeis.org

81, 1875, 50553, 1412907, 39868737, 1127761923, 31921015497, 903661481115, 25583075832465, 724276345970163, 20504869741550745, 580510427181846027, 16434750355138945761, 465281963351360897763, 13172534004090254190441
Offset: 1

Views

Author

R. H. Hardin Mar 18 2013

Keywords

Comments

Column 5 of A223209

Examples

			Some solutions for n=3
..0..1..4..3..4....0..2..0..2..0....0..1..0..2..3....0..2..0..1..6
..1..4..3..4..1....2..8..2..0..2....5..0..5..0..2....1..0..1..4..1
..4..1..4..1..6....8..2..3..2..3....0..2..0..5..0....0..1..4..1..4
Face neighbors:
0 -> 1 2 5
1 -> 0 4 6
2 -> 0 3 8
3 -> 2 4 16
4 -> 3 1 17
5 -> 0 7 9
6 -> 1 7 10
7 -> 6 5 11
8 -> 2 9 13
9 -> 8 5 14
10 -> 6 12 17
11 -> 7 12 14
12 -> 11 10 19
13 -> 8 15 16
14 -> 9 11 15
15 -> 14 13 19
16 -> 3 13 18
17 -> 4 10 18
18 -> 16 17 19
19 -> 15 18 12
		

Formula

Empirical: a(n) = 31*a(n-1) -24*a(n-2) -1612*a(n-3) +3816*a(n-4) +1152*a(n-5) -2784*a(n-6) +256*a(n-7)

A223207 Rolling icosahedron face footprints: number of nX6 0..19 arrays starting with 0 where 0..19 label faces of an icosahedron and every array movement to a horizontal or vertical neighbor moves across an icosahedral edge.

Original entry on oeis.org

243, 9375, 443451, 22163655, 1127761923, 57728430255, 2960941376139, 151970441720919, 7801619707803603, 400536865551609279, 20564155823714361819, 1055802848340690163431, 54207072655600127312547
Offset: 1

Views

Author

R. H. Hardin Mar 18 2013

Keywords

Comments

Column 6 of A223209

Examples

			Some solutions for n=3
..0..2..0..1..6.10....0..1..6.10..6.10....0..5..0..2..3..4....0..5..9..5..9..8
..5..0..1..0..1..6....5..0..1..6..1..6....5..0..2..3.16..3....5..9..5..9..8..9
..0..2..0..1..6.10....0..1..4..1..6..1....0..2..3..2..3.16....0..5..0..5..9.14
Face neighbors:
0 -> 1 2 5
1 -> 0 4 6
2 -> 0 3 8
3 -> 2 4 16
4 -> 3 1 17
5 -> 0 7 9
6 -> 1 7 10
7 -> 6 5 11
8 -> 2 9 13
9 -> 8 5 14
10 -> 6 12 17
11 -> 7 12 14
12 -> 11 10 19
13 -> 8 15 16
14 -> 9 11 15
15 -> 14 13 19
16 -> 3 13 18
17 -> 4 10 18
18 -> 16 17 19
19 -> 15 18 12
		

Formula

Empirical: a(n) = 77*a(n-1) -1444*a(n-2) +5860*a(n-3) +38744*a(n-4) -300016*a(n-5) +339296*a(n-6) +1286720*a(n-7) -2655360*a(n-8) -56832*a(n-9) +1682944*a(n-10) -149504*a(n-11) -163840*a(n-12)

A223208 Rolling icosahedron face footprints: number of nX7 0..19 arrays starting with 0 where 0..19 label faces of an icosahedron and every array movement to a horizontal or vertical neighbor moves across an icosahedral edge.

Original entry on oeis.org

729, 46875, 3889953, 347696019, 31921015497, 2960941376139, 275769851453745, 25725360515161923, 2401334251012194777, 224209069529029889211, 20936162679299127225537, 1955051227721359130017011
Offset: 1

Views

Author

R. H. Hardin Mar 18 2013

Keywords

Comments

Column 7 of A223209

Examples

			Some solutions for n=3
..0..5..9..5..9..5..7....0..5..0..2..0..1..4....0..5..0..1..6..1..4
..5..0..5..0..5..9..5....5..0..2..0..5..0..1....5..0..1..0..1..4.17
..0..5..0..1..0..5..7....0..5..0..5..0..2..0....0..5..0..1..4.17..4
Face neighbors:
0 -> 1 2 5
1 -> 0 4 6
2 -> 0 3 8
3 -> 2 4 16
4 -> 3 1 17
5 -> 0 7 9
6 -> 1 7 10
7 -> 6 5 11
8 -> 2 9 13
9 -> 8 5 14
10 -> 6 12 17
11 -> 7 12 14
12 -> 11 10 19
13 -> 8 15 16
14 -> 9 11 15
15 -> 14 13 19
16 -> 3 13 18
17 -> 4 10 18
18 -> 16 17 19
19 -> 15 18 12
		

Formula

Empirical: a(n) = 117*a(n-1) -614*a(n-2) -193608*a(n-3) +4171896*a(n-4) +11415328*a(n-5) -842180224*a(n-6) +3384845504*a(n-7) +50528534400*a(n-8) -356768428544*a(n-9) -786566761984*a(n-10) +10681051645952*a(n-11) -6785526038528*a(n-12) -118510105321472*a(n-13) +197530250887168*a(n-14) +559297782349824*a(n-15) -1309510355714048*a(n-16) -1087672042455040*a(n-17) +3564507406925824*a(n-18) +719985279238144*a(n-19) -4461650060509184*a(n-20) +91947477762048*a(n-21) +2549613680656384*a(n-22) -206006306996224*a(n-23) -619282299879424*a(n-24) +65421579386880*a(n-25) +47138239152128*a(n-26) -8245531901952*a(n-27) +260919263232*a(n-28)

A223203 Rolling icosahedron face footprints: number of n X n 0..19 arrays starting with 0 where 0..19 label faces of an icosahedron and every array movement to a horizontal or vertical neighbor moves across an icosahedral edge.

Original entry on oeis.org

1, 15, 657, 90111, 39868737, 57728430255, 275769851453745, 4367470887097715487, 230051556728875753924449, 40390820217552511124819066703
Offset: 1

Views

Author

R. H. Hardin Mar 18 2013

Keywords

Comments

Diagonal of A223209

Examples

			Some solutions for n=3
..0..2..0....0..5..7....0..5..0....0..5..0....0..5..7....0..2..0....0..1..6
..1..0..2....5..0..5....2..0..5....5..0..5....5..7.11....2..3..2....1..0..1
..0..5..0....0..5..9....0..2..0....0..5..7....7.11.12....8..2..3....6..1..6
Face neighbors:
0 -> 1 2 5
1 -> 0 4 6
2 -> 0 3 8
3 -> 2 4 16
4 -> 3 1 17
5 -> 0 7 9
6 -> 1 7 10
7 -> 6 5 11
8 -> 2 9 13
9 -> 8 5 14
10 -> 6 12 17
11 -> 7 12 14
12 -> 11 10 19
13 -> 8 15 16
14 -> 9 11 15
15 -> 14 13 19
16 -> 3 13 18
17 -> 4 10 18
18 -> 16 17 19
19 -> 15 18 12
		
Showing 1-6 of 6 results.