cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A223211 3 X 3 X 3 triangular graph coloring a rectangular array: number of n X 1 0..5 arrays where 0..5 label nodes of a graph with edges 0,1 0,2 1,2 1,3 1,4 2,4 3,4 2,5 4,5 and every array movement to a horizontal or vertical neighbor moves along an edge of this graph.

Original entry on oeis.org

6, 18, 60, 192, 624, 2016, 6528, 21120, 68352, 221184, 715776, 2316288, 7495680, 24256512, 78495744, 254017536, 822018048, 2660106240, 8608284672, 27856994304, 90147127296, 291722231808, 944032972800, 3054954872832, 9886041636864
Offset: 1

Views

Author

R. H. Hardin, Mar 18 2013

Keywords

Comments

Column 1 of A223218.

Examples

			Some solutions for n=3:
..4....4....0....2....1....4....2....3....2....2....0....5....1....3....4....5
..2....1....1....5....2....2....1....1....0....1....1....4....3....4....3....2
..0....4....4....2....0....4....2....0....2....0....0....2....1....1....1....1
		

Crossrefs

Cf. A223218.

Formula

Empirical: a(n) = 2*a(n-1) + 4*a(n-2) = 6*A063782(n-1).
Conjectures from Colin Barker, Aug 17 2018: (Start)
G.f.: 6*x*(1 + x) / (1 - 2*x - 4*x^2).
a(n) = (3*((1-sqrt(5))^n*(-3+sqrt(5)) + (1+sqrt(5))^n*(3+sqrt(5)))) / (4*sqrt(5)).
(End)