A223211 3 X 3 X 3 triangular graph coloring a rectangular array: number of n X 1 0..5 arrays where 0..5 label nodes of a graph with edges 0,1 0,2 1,2 1,3 1,4 2,4 3,4 2,5 4,5 and every array movement to a horizontal or vertical neighbor moves along an edge of this graph.
6, 18, 60, 192, 624, 2016, 6528, 21120, 68352, 221184, 715776, 2316288, 7495680, 24256512, 78495744, 254017536, 822018048, 2660106240, 8608284672, 27856994304, 90147127296, 291722231808, 944032972800, 3054954872832, 9886041636864
Offset: 1
Keywords
Examples
Some solutions for n=3: ..4....4....0....2....1....4....2....3....2....2....0....5....1....3....4....5 ..2....1....1....5....2....2....1....1....0....1....1....4....3....4....3....2 ..0....4....4....2....0....4....2....0....2....0....0....2....1....1....1....1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A223218.
Formula
Empirical: a(n) = 2*a(n-1) + 4*a(n-2) = 6*A063782(n-1).
Conjectures from Colin Barker, Aug 17 2018: (Start)
G.f.: 6*x*(1 + x) / (1 - 2*x - 4*x^2).
a(n) = (3*((1-sqrt(5))^n*(-3+sqrt(5)) + (1+sqrt(5))^n*(3+sqrt(5)))) / (4*sqrt(5)).
(End)
Comments