cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A223213 3X3X3 triangular graph coloring a rectangular array: number of nX3 0..5 arrays where 0..5 label nodes of a graph with edges 0,1 0,2 1,2 1,3 1,4 2,4 3,4 2,5 4,5 and every array movement to a horizontal or vertical neighbor moves along an edge of this graph.

Original entry on oeis.org

60, 918, 15498, 254694, 4232586, 70014654, 1160465118, 19217863458, 318374151654, 5273531868834, 87356475139362, 1447024166557638, 23969667617068794, 397050589780025454, 6577043474587192446
Offset: 1

Views

Author

R. H. Hardin Mar 18 2013

Keywords

Comments

Column 3 of A223218

Examples

			Some solutions for n=3
..1..4..2....2..5..2....5..2..5....4..1..3....4..5..4....1..2..1....4..1..2
..4..5..4....5..2..1....4..1..4....2..4..1....1..4..1....2..1..4....2..4..5
..3..4..1....2..1..3....3..4..3....4..1..4....4..1..2....1..4..5....4..5..4
		

Formula

Empirical: a(n) = 10*a(n-1) +118*a(n-2) -120*a(n-3) -577*a(n-4) +380*a(n-5) +504*a(n-6) -16*a(n-8).
Empirical g.f.: -6*x*(-10-53*x+127*x^2+235*x^3-277*x^4-258*x^5+4*x^6+8*x^7) / ( 1-10*x-118*x^2+120*x^3+577*x^4-380*x^5-504*x^6+16*x^8 ). - R. J. Mathar, May 21 2018