cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A223211 3 X 3 X 3 triangular graph coloring a rectangular array: number of n X 1 0..5 arrays where 0..5 label nodes of a graph with edges 0,1 0,2 1,2 1,3 1,4 2,4 3,4 2,5 4,5 and every array movement to a horizontal or vertical neighbor moves along an edge of this graph.

Original entry on oeis.org

6, 18, 60, 192, 624, 2016, 6528, 21120, 68352, 221184, 715776, 2316288, 7495680, 24256512, 78495744, 254017536, 822018048, 2660106240, 8608284672, 27856994304, 90147127296, 291722231808, 944032972800, 3054954872832, 9886041636864
Offset: 1

Views

Author

R. H. Hardin, Mar 18 2013

Keywords

Comments

Column 1 of A223218.

Examples

			Some solutions for n=3:
..4....4....0....2....1....4....2....3....2....2....0....5....1....3....4....5
..2....1....1....5....2....2....1....1....0....1....1....4....3....4....3....2
..0....4....4....2....0....4....2....0....2....0....0....2....1....1....1....1
		

Crossrefs

Cf. A223218.

Formula

Empirical: a(n) = 2*a(n-1) + 4*a(n-2) = 6*A063782(n-1).
Conjectures from Colin Barker, Aug 17 2018: (Start)
G.f.: 6*x*(1 + x) / (1 - 2*x - 4*x^2).
a(n) = (3*((1-sqrt(5))^n*(-3+sqrt(5)) + (1+sqrt(5))^n*(3+sqrt(5)))) / (4*sqrt(5)).
(End)

A223212 3X3X3 triangular graph coloring a rectangular array: number of nX2 0..5 arrays where 0..5 label nodes of a graph with edges 0,1 0,2 1,2 1,3 1,4 2,4 3,4 2,5 4,5 and every array movement to a horizontal or vertical neighbor moves along an edge of this graph.

Original entry on oeis.org

18, 126, 918, 6642, 48114, 348462, 2523798, 18278946, 132387858, 958837662, 6944516694, 50296639122, 364280484978, 2638352661966, 19108640336598, 138397015977282, 1002359858893074, 7259732297153982, 52579632512961558
Offset: 1

Views

Author

R. H. Hardin Mar 18 2013

Keywords

Comments

Column 2 of A223218

Examples

			Some solutions for n=3
..0..1....1..4....0..1....0..2....4..1....4..1....4..2....2..4....0..2....5..2
..2..4....2..1....1..0....1..4....1..2....2..4....2..4....4..1....2..0....2..5
..0..2....1..2....4..1....3..1....4..1....4..2....0..2....1..2....0..1....0..2
		

Formula

Empirical: a(n) = 6*a(n-1) +9*a(n-2).
Empirical g.f.: -18*x*(1+x)/(-1+6*x+9*x^2) . a(n) = 18*(A189801(n)+A189801(n-1)). - R. J. Mathar, May 21 2018

A223213 3X3X3 triangular graph coloring a rectangular array: number of nX3 0..5 arrays where 0..5 label nodes of a graph with edges 0,1 0,2 1,2 1,3 1,4 2,4 3,4 2,5 4,5 and every array movement to a horizontal or vertical neighbor moves along an edge of this graph.

Original entry on oeis.org

60, 918, 15498, 254694, 4232586, 70014654, 1160465118, 19217863458, 318374151654, 5273531868834, 87356475139362, 1447024166557638, 23969667617068794, 397050589780025454, 6577043474587192446
Offset: 1

Views

Author

R. H. Hardin Mar 18 2013

Keywords

Comments

Column 3 of A223218

Examples

			Some solutions for n=3
..1..4..2....2..5..2....5..2..5....4..1..3....4..5..4....1..2..1....4..1..2
..4..5..4....5..2..1....4..1..4....2..4..1....1..4..1....2..1..4....2..4..5
..3..4..1....2..1..3....3..4..3....4..1..4....4..1..2....1..4..5....4..5..4
		

Formula

Empirical: a(n) = 10*a(n-1) +118*a(n-2) -120*a(n-3) -577*a(n-4) +380*a(n-5) +504*a(n-6) -16*a(n-8).
Empirical g.f.: -6*x*(-10-53*x+127*x^2+235*x^3-277*x^4-258*x^5+4*x^6+8*x^7) / ( 1-10*x-118*x^2+120*x^3+577*x^4-380*x^5-504*x^6+16*x^8 ). - R. J. Mathar, May 21 2018

A223214 3X3X3 triangular graph coloring a rectangular array: number of nX4 0..5 arrays where 0..5 label nodes of a graph with edges 0,1 0,2 1,2 1,3 1,4 2,4 3,4 2,5 4,5 and every array movement to a horizontal or vertical neighbor moves along an edge of this graph.

Original entry on oeis.org

192, 6642, 254694, 9640008, 367156350, 13964418774, 531419938920, 20220127602030, 769404277676466, 29276398278326448, 1113995137856350842, 42388505934881462730, 1612921387627093865328, 61373120006749414194594
Offset: 1

Views

Author

R. H. Hardin Mar 18 2013

Keywords

Comments

Column 4 of A223218

Examples

			Some solutions for n=3
..3..1..2..4....0..1..4..3....1..3..4..2....4..5..2..1....3..1..0..1
..4..2..0..2....1..2..5..4....3..1..2..5....3..4..1..4....1..4..1..4
..5..4..1..4....2..5..4..3....1..0..1..2....1..2..0..2....3..1..2..5
		

Formula

Empirical: a(n) = 36*a(n-1) +219*a(n-2) -5538*a(n-3) +3051*a(n-4) +141678*a(n-5) -180657*a(n-6) -980802*a(n-7) +1136403*a(n-8) +1765044*a(n-9) -1679697*a(n-10) -991440*a(n-11) +763668*a(n-12) +60264*a(n-13) -77760*a(n-14) +7776*a(n-15)

A223215 3X3X3 triangular graph coloring a rectangular array: number of nX5 0..5 arrays where 0..5 label nodes of a graph with edges 0,1 0,2 1,2 1,3 1,4 2,4 3,4 2,5 4,5 and every array movement to a horizontal or vertical neighbor moves along an edge of this graph.

Original entry on oeis.org

624, 48114, 4232586, 367156350, 32213930742, 2819203560630, 247143798101322, 21653415762483246, 1897735773641654046, 166300121937966179310, 14573870195990661027330, 1277163080979499793030130
Offset: 1

Views

Author

R. H. Hardin Mar 18 2013

Keywords

Comments

Column 5 of A223218

Examples

			Some solutions for n=3
..0..1..3..1..3....0..2..0..1..2....0..1..0..1..2....0..2..4..5..4
..1..0..1..4..1....1..4..1..2..5....1..0..2..4..5....1..4..2..4..2
..0..2..4..5..2....0..1..4..1..4....0..1..4..5..4....0..2..4..2..4
		

Formula

Empirical: a(n) = 64*a(n-1) +3496*a(n-2) -104128*a(n-3) -2437410*a(n-4) +49302884*a(n-5) +557525760*a(n-6) -9465346688*a(n-7) -53592872633*a(n-8) +868267508240*a(n-9) +2235257041399*a(n-10) -41069041856528*a(n-11) -36491801604768*a(n-12) +1061861955280348*a(n-13) -32518628901806*a(n-14) -15720782954090080*a(n-15) +8280943406836616*a(n-16) +139041174144887408*a(n-17) -112580871139611713*a(n-18) -753441986044479920*a(n-19) +742544685340720320*a(n-20) +2520998438780302208*a(n-21) -2793597033221247360*a(n-22) -5173462381751115264*a(n-23) +6291736944543350272*a(n-24) +6359191157618116608*a(n-25) -8671729791397443584*a(n-26) -4363943425625771008*a(n-27) +7344832317209315328*a(n-28) +1297000451641442304*a(n-29) -3753223506173448192*a(n-30) +157481325008027648*a(n-31) +1106554234568310784*a(n-32) -219305825967177728*a(n-33) -171321792926318592*a(n-34) +57655910201294848*a(n-35) +10784605931569152*a(n-36) -6327661169213440*a(n-37) +107512997085184*a(n-38) +282873139560448*a(n-39) -33534391615488*a(n-40) -3153512628224*a(n-41) +696053137408*a(n-42) -10200547328*a(n-43) -3221225472*a(n-44) +134217728*a(n-45)

A223216 3X3X3 triangular graph coloring a rectangular array: number of nX6 0..5 arrays where 0..5 label nodes of a graph with edges 0,1 0,2 1,2 1,3 1,4 2,4 3,4 2,5 4,5 and every array movement to a horizontal or vertical neighbor moves along an edge of this graph.

Original entry on oeis.org

2016, 348462, 70014654, 13964418774, 2819203560630, 568826898735456, 114951289224812310, 23227660271475502380, 4694519943609992528562, 948788414286463188576882, 191761199180338417680628116
Offset: 1

Views

Author

R. H. Hardin Mar 18 2013

Keywords

Comments

Column 6 of A223218

Examples

			Some solutions for n=3
..0..1..0..2..5..4....0..1..0..2..4..3....0..1..0..1..4..3....0..1..3..1..2..1
..1..0..2..1..2..1....1..2..1..4..2..1....1..0..2..4..1..4....1..2..4..3..1..2
..0..1..4..2..4..2....0..1..0..2..0..2....0..1..0..1..3..1....0..1..3..1..2..4
		

Formula

Empirical: a(n) = 240*a(n-1) +1092*a(n-2) -2136312*a(n-3) +54638418*a(n-4) +4959884592*a(n-5) -180717825656*a(n-6) -4388852019525*a(n-7) +222725936152233*a(n-8) +1299240518682420*a(n-9) -135392050801829772*a(n-10) +270135029342092914*a(n-11) +45688037606819892326*a(n-12) -276868217598214764540*a(n-13) -9295846895323782585804*a(n-14) +80358659205883862455431*a(n-15) +1207420412107156713478659*a(n-16) -12926472910438452699368196*a(n-17) -103964705452714479973645644*a(n-18) +1331390203816211039555082126*a(n-19) +6033444542481858775567916331*a(n-20) -93767100515308750602409540605*a(n-21) -232477773029978928510229512774*a(n-22) +4688219795208831927083993785497*a(n-23) +5400530367757285312000335343856*a(n-24) -170352807718938294501807580371144*a(n-25) -37646112822503015406082368747396*a(n-26) +4566384824777311452364599935827995*a(n-27) -2199031253416569932942398003538436*a(n-28) -91108929995376816778096155444488727*a(n-29) +95857977833241733356325731374386824*a(n-30) +1357940697353723583863345440038522834*a(n-31) -2112732262411791153670852041020362410*a(n-32) -15082023019004693849475957746098580652*a(n-33) +30933968369947180899224217842078584296*a(n-34) +123409791587750678640920953701014338053*a(n-35) -322779172834962299360962554089440655066*a(n-36) -723041608520918497015165018387164641205*a(n-37) +2463450842849943395798217986237661833964*a(n-38) +2815891168866405206961079029588962079618*a(n-39) -13863702454162310767040132898208592669886*a(n-40) -5438356906438627503233243216975378624403*a(n-41) +57341042889781764115094075944140966518102*a(n-42) -9546859962180595768552979357426867825457*a(n-43) -171709230050099586776424354283655415265386*a(n-44) +108304371770873726984750875672774107551226*a(n-45) +360128021131777502837950016460132845037828*a(n-46) -394110231128738315515358175567524004712458*a(n-47) -490348304350608406859807387371871976718070*a(n-48) +855393022127207220958472058232460002291764*a(n-49) +335746971100118145817441662101192827224342*a(n-50) -1202016118559123669414630794203625301900979*a(n-51) +108569335002139047989091755292603986988408*a(n-52) +1093257381491730516256193612712535937218260*a(n-53) -479617224142898819288994398904466796202786*a(n-54) -612513833165358271365052129986447296782059*a(n-55) +487873539969846628480249167410135199454848*a(n-56) +178011844827877363457965209193333861698672*a(n-57) -269861850936427234755518174721514631689632*a(n-58) -481454733782051827425828864392727562848*a(n-59) +89547467784863221926487839232939259218944*a(n-60) -18834871783373713594826538792515681962752*a(n-61) -17867120813255482814041179377273473759488*a(n-62) +6884837526037578310652258219184850491648*a(n-63) +2006697349964400012565897316858337245184*a(n-64) -1256004425305051308064473084037516234752*a(n-65) -94185494173592777215057383902608408576*a(n-66) +134007047926705054326497183385441828864*a(n-67) -3493495378284328319170127904949174272*a(n-68) -8704241590665031998895805799956889600*a(n-69) +663099191622850153903606971223179264*a(n-70) +347642466286414386688482306005139456*a(n-71) -32809590814481451210552337647009792*a(n-72) -8428882868783473345568553463971840*a(n-73) +715685322302339763980834011348992*a(n-74) +115946482937616298892673140391936*a(n-75) -5759294397879514771269724667904*a(n-76) -690473027255071938191258812416*a(n-77)

A223217 3X3X3 triangular graph coloring a rectangular array: number of nX7 0..5 arrays where 0..5 label nodes of a graph with edges 0,1 0,2 1,2 1,3 1,4 2,4 3,4 2,5 4,5 and every array movement to a horizontal or vertical neighbor moves along an edge of this graph.

Original entry on oeis.org

6528, 2523798, 1160465118, 531419938920, 247143798101322, 114951289224812310, 53598993642186546600, 24992288357276722268070, 11658720331222331821271670, 5438674473932192381017144224, 2537301177538849145899098252090
Offset: 1

Views

Author

R. H. Hardin Mar 18 2013

Keywords

Comments

Column 7 of A223218

Examples

			Some solutions for n=3
..0..1..0..2..4..1..4....0..1..0..1..4..2..4....0..1..0..2..4..2..1
..1..0..2..4..3..4..3....1..0..1..0..2..1..2....1..0..2..4..2..0..2
..0..1..0..1..4..2..4....0..1..0..2..0..2..0....0..1..0..1..4..1..4
		

A223210 3X3X3 triangular graph coloring a rectangular array: number of n X n 0..5 arrays where 0..5 label nodes of a graph with edges 0,1 0,2 1,2 1,3 1,4 2,4 3,4 2,5 4,5 and every array movement to a horizontal or vertical neighbor moves along an edge of this graph.

Original entry on oeis.org

6, 126, 15498, 9640008, 32213930742, 568826898735456, 53598993642186546600, 26904643609262481062550540, 72104047201942444207678110553554, 1031832360324996701256333234422715357000
Offset: 1

Views

Author

R. H. Hardin Mar 18 2013

Keywords

Comments

Diagonal of A223218

Examples

			Some solutions for n=3
..3..4..3....2..4..2....2..4..2....2..0..1....1..4..3....0..2..0....4..3..4
..4..1..4....4..2..1....4..3..4....4..2..4....0..1..4....2..4..1....2..4..2
..1..2..1....3..1..3....5..4..3....2..4..1....2..4..1....4..1..2....4..3..4
		
Showing 1-8 of 8 results.