A223228 Rolling icosahedron footprints: number of n X 3 0..11 arrays starting with 0 where 0..11 label vertices of an icosahedron and every array movement to a horizontal, diagonal or antidiagonal neighbor moves along an icosahedral edge.
25, 785, 25225, 812225, 26157625, 842416625, 27130395625, 873746350625, 28139386665625, 906241361740625, 29185902861015625, 939944877578890625, 30271339457769765625, 974901842039841640625, 31397143920195178515625
Offset: 1
Keywords
Examples
Some solutions for n=3: ..0..7.11....0..7.11....0..6.10....0..7..0....0..2..0....0..2..0....0..6..4 ..3..7..3....3..7..1....2..6..2...11..7..1....0..7..0....0..6..4....4..2..4 .11..7.11....5..7..3....2..4..2....0..7..5...11..7..3....4..2..0....8..9..4 Vertex neighbors: 0 -> 1 2 5 6 7 1 -> 0 2 3 7 8 2 -> 0 1 4 6 8 3 -> 1 7 8 9 11 4 -> 2 6 8 9 10 5 -> 0 6 7 10 11 6 -> 0 2 4 5 10 7 -> 0 1 3 5 11 8 -> 1 2 3 4 9 9 -> 3 4 8 10 11 10 -> 4 5 6 9 11 11 -> 3 5 7 9 10
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A223233.
Formula
Empirical: a(n) = 35*a(n-1) - 90*a(n-2).
Conjectures from Colin Barker, Aug 17 2018: (Start)
G.f.: 5*x*(5 - 18*x) / (1 - 35*x + 90*x^2).
a(n) = (2^(-1-n)*((35-sqrt(865))^n*(-15+sqrt(865)) + (15+sqrt(865))*(35+sqrt(865))^n)) / sqrt(865).
(End)
Comments