A223229 Rolling icosahedron footprints: number of n X 4 0..11 arrays starting with 0 where 0..11 label vertices of an icosahedron and every array movement to a horizontal, diagonal or antidiagonal neighbor moves along an icosahedral edge.
125, 7445, 492365, 32837285, 2191464605, 146259564725, 9761484584045, 651489782832965, 43480983274973885, 2901957882023749205, 193679142376194109325, 12926311034495639900645, 862713015509641940473565
Offset: 1
Keywords
Examples
Some solutions for n=3: ..0..6.10..5....0..5..7..0....0..5..0..7....0..1..7..5....0..2..4..2 ..0..6.10..6....0..5..7..3....6..5..0..6....0..1..7..5....6..2..8..9 ..0..6..5..6....0..5..7..3....0..2..0..5....3..1..7..0....0..2..8..1 Vertex neighbors: 0 -> 1 2 5 6 7 1 -> 0 2 3 7 8 2 -> 0 1 4 6 8 3 -> 1 7 8 9 11 4 -> 2 6 8 9 10 5 -> 0 6 7 10 11 6 -> 0 2 4 5 10 7 -> 0 1 3 5 11 8 -> 1 2 3 4 9 9 -> 3 4 8 10 11 10 -> 4 5 6 9 11 11 -> 3 5 7 9 10
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A223233.
Formula
Empirical: a(n) = 73*a(n-1) - 423*a(n-2) + 351*a(n-3).
Empirical g.f.: 5*x*(25 - 336*x + 351*x^2) / ((1 - x)*(1 - 72*x + 351*x^2)). - Colin Barker, Aug 17 2018
Comments