cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A223228 Rolling icosahedron footprints: number of n X 3 0..11 arrays starting with 0 where 0..11 label vertices of an icosahedron and every array movement to a horizontal, diagonal or antidiagonal neighbor moves along an icosahedral edge.

Original entry on oeis.org

25, 785, 25225, 812225, 26157625, 842416625, 27130395625, 873746350625, 28139386665625, 906241361740625, 29185902861015625, 939944877578890625, 30271339457769765625, 974901842039841640625, 31397143920195178515625
Offset: 1

Views

Author

R. H. Hardin, Mar 18 2013

Keywords

Comments

Column 3 of A223233.

Examples

			Some solutions for n=3:
..0..7.11....0..7.11....0..6.10....0..7..0....0..2..0....0..2..0....0..6..4
..3..7..3....3..7..1....2..6..2...11..7..1....0..7..0....0..6..4....4..2..4
.11..7.11....5..7..3....2..4..2....0..7..5...11..7..3....4..2..0....8..9..4
Vertex neighbors:
0 -> 1 2 5 6 7
1 -> 0 2 3 7 8
2 -> 0 1 4 6 8
3 -> 1 7 8 9 11
4 -> 2 6 8 9 10
5 -> 0 6 7 10 11
6 -> 0 2 4 5 10
7 -> 0 1 3 5 11
8 -> 1 2 3 4 9
9 -> 3 4 8 10 11
10 -> 4 5 6 9 11
11 -> 3 5 7 9 10
		

Crossrefs

Cf. A223233.

Formula

Empirical: a(n) = 35*a(n-1) - 90*a(n-2).
Conjectures from Colin Barker, Aug 17 2018: (Start)
G.f.: 5*x*(5 - 18*x) / (1 - 35*x + 90*x^2).
a(n) = (2^(-1-n)*((35-sqrt(865))^n*(-15+sqrt(865)) + (15+sqrt(865))*(35+sqrt(865))^n)) / sqrt(865).
(End)

A223229 Rolling icosahedron footprints: number of n X 4 0..11 arrays starting with 0 where 0..11 label vertices of an icosahedron and every array movement to a horizontal, diagonal or antidiagonal neighbor moves along an icosahedral edge.

Original entry on oeis.org

125, 7445, 492365, 32837285, 2191464605, 146259564725, 9761484584045, 651489782832965, 43480983274973885, 2901957882023749205, 193679142376194109325, 12926311034495639900645, 862713015509641940473565
Offset: 1

Views

Author

R. H. Hardin, Mar 18 2013

Keywords

Comments

Column 4 of A223233.

Examples

			Some solutions for n=3:
..0..6.10..5....0..5..7..0....0..5..0..7....0..1..7..5....0..2..4..2
..0..6.10..6....0..5..7..3....6..5..0..6....0..1..7..5....6..2..8..9
..0..6..5..6....0..5..7..3....0..2..0..5....3..1..7..0....0..2..8..1
Vertex neighbors:
0 -> 1 2 5 6 7
1 -> 0 2 3 7 8
2 -> 0 1 4 6 8
3 -> 1 7 8 9 11
4 -> 2 6 8 9 10
5 -> 0 6 7 10 11
6 -> 0 2 4 5 10
7 -> 0 1 3 5 11
8 -> 1 2 3 4 9
9 -> 3 4 8 10 11
10 -> 4 5 6 9 11
11 -> 3 5 7 9 10
		

Crossrefs

Cf. A223233.

Formula

Empirical: a(n) = 73*a(n-1) - 423*a(n-2) + 351*a(n-3).
Empirical g.f.: 5*x*(25 - 336*x + 351*x^2) / ((1 - x)*(1 - 72*x + 351*x^2)). - Colin Barker, Aug 17 2018

A223230 Rolling icosahedron footprints: number of n X 5 0..11 arrays starting with 0 where 0..11 label vertices of an icosahedron and every array movement to a horizontal, diagonal or antidiagonal neighbor moves along an icosahedral edge.

Original entry on oeis.org

625, 75665, 11043445, 1697263985, 266409703885, 42210625593305, 6716507564288245, 1070788920090847265, 170861214141424879645, 27274345271819338522025, 4354541372254902852256645
Offset: 1

Views

Author

R. H. Hardin Mar 18 2013

Keywords

Comments

Column 5 of A223233.

Examples

			Some solutions for n=3
..0..2..4.10..4....0..5..0..2..4....0..6..2..0..1....0..5..6..0..2
..6..2..6.10.11....6..2..6..2..6....0..6..2..8..2....6..2..6..4..6
..1..0..6.10..5....1..0..1..2..0....0..6..2..1..2....6..0..6..2..6
Vertex neighbors:
0 -> 1 2 5 6 7
1 -> 0 2 3 7 8
2 -> 0 1 4 6 8
3 -> 1 7 8 9 11
4 -> 2 6 8 9 10
5 -> 0 6 7 10 11
6 -> 0 2 4 5 10
7 -> 0 1 3 5 11
8 -> 1 2 3 4 9
9 -> 3 4 8 10 11
10 -> 4 5 6 9 11
11 -> 3 5 7 9 10
		

Crossrefs

Cf. A223233.

Formula

Empirical: a(n) = 251*a(n-1) -15873*a(n-2) +195175*a(n-3) +2042368*a(n-4) -47798442*a(n-5) +263976930*a(n-6) -451699632*a(n-7) -350892000*a(n-8) +1964608344*a(n-9) -2144659680*a(n-10) +765275040*a(n-11).

A223231 Rolling icosahedron footprints: number of nX6 0..11 arrays starting with 0 where 0..11 label vertices of an icosahedron and every array movement to a horizontal, diagonal or antidiagonal neighbor moves along an icosahedral edge.

Original entry on oeis.org

3125, 753005, 236027705, 78951770585, 27049155640325, 9343721361109325, 3237164242739054345, 1122694859942471556185, 389510525064654891088085, 135155431698699358247850605, 46899472272729726654991007705
Offset: 1

Views

Author

R. H. Hardin Mar 18 2013

Keywords

Comments

Column 6 of A223233

Examples

			Some solutions for n=3
..0..6..0..5..6.10....0..6..0..1..0..1....0..6..4..2..0..2....0..6..0..2..0..2
..0..6..0..5..6..5....0..6..0..1..0..5....0..6..0..2..0..7....0..6..0..7..0..7
..0..6..0..5..6..2....0..6..0..1..7..1....0..6..0..7..1..7....0..6..0..2..0..2
Vertex neighbors:
0 -> 1 2 5 6 7
1 -> 0 2 3 7 8
2 -> 0 1 4 6 8
3 -> 1 7 8 9 11
4 -> 2 6 8 9 10
5 -> 0 6 7 10 11
6 -> 0 2 4 5 10
7 -> 0 1 3 5 11
8 -> 1 2 3 4 9
9 -> 3 4 8 10 11
10 -> 4 5 6 9 11
11 -> 3 5 7 9 10
		

Formula

Empirical: a(n) = 525*a(n-1) -66702*a(n-2) +1331899*a(n-3) +153275287*a(n-4) -7341587858*a(n-5) +30374971203*a(n-6) +3824146236752*a(n-7) -75111050134232*a(n-8) +205037655577424*a(n-9) +6460684913361019*a(n-10) -49290095118307364*a(n-11) -140021336623195442*a(n-12) +2200689678890462843*a(n-13) -1458667313500165314*a(n-14) -37187688159845953965*a(n-15) +75037715810598760272*a(n-16) +230357416636661884542*a(n-17) -652626536223111303870*a(n-18) -496313838990773846658*a(n-19) +2029968756189631881972*a(n-20) +256192718593072185252*a(n-21) -2481072401873869960176*a(n-22) +64389835845560317824*a(n-23) +1236374401394896182000*a(n-24) -45277328877999388704*a(n-25) -205116615409293840384*a(n-26)

A223232 Rolling icosahedron footprints: number of nX7 0..11 arrays starting with 0 where 0..11 label vertices of an icosahedron and every array movement to a horizontal, diagonal or antidiagonal neighbor moves along an icosahedral edge.

Original entry on oeis.org

15625, 7540985, 5127809545, 3843057179285, 3010781803380625, 2410480042269361205, 1952463524081506924645, 1591754706579747811787945, 1302463364554005567144837065, 1067991482533134242042535939665
Offset: 1

Views

Author

R. H. Hardin Mar 18 2013

Keywords

Comments

Column 7 of A223233

Examples

			Some solutions for n=3
..0..6..0..6..0..6..0....0..6..0..5..0..1..2....0..6..0..6..4..8..2
..0..6..0..6..0..7..0....0..6..0..6..0..6..2....0..6..0..6..2..8..3
..0..6..0..1..0..2..0....0..6..0..6..5..6..0....0..6..0..6..2..8..1
Vertex neighbors:
0 -> 1 2 5 6 7
1 -> 0 2 3 7 8
2 -> 0 1 4 6 8
3 -> 1 7 8 9 11
4 -> 2 6 8 9 10
5 -> 0 6 7 10 11
6 -> 0 2 4 5 10
7 -> 0 1 3 5 11
8 -> 1 2 3 4 9
9 -> 3 4 8 10 11
10 -> 4 5 6 9 11
11 -> 3 5 7 9 10
		

A223234 Rolling icosahedron footprints: number of 2 X n 0..11 arrays starting with 0 where 0..11 label vertices of an icosahedron and every array movement to a horizontal, diagonal or antidiagonal neighbor moves along an icosahedral edge.

Original entry on oeis.org

12, 65, 785, 7445, 75665, 753005, 7540985, 75377045, 753868865, 7538393405, 75384819785, 753845540645, 7538463378065, 75384609865805, 753846170402585, 7538461488792245, 75384615533623265, 753846153399130205
Offset: 1

Views

Author

R. H. Hardin, Mar 18 2013

Keywords

Comments

Row 2 of A223233.

Examples

			Some solutions for n=3:
..0..2..1....0..7.11....0..6..2....0..6..5....0..7..3....0..2..1....0..2..0
..0..7..0....3..7..3...10..6..4....4..6..5....3..7..0....6..2..8....8..2..4
Vertex neighbors:
0 -> 1 2 5 6 7
1 -> 0 2 3 7 8
2 -> 0 1 4 6 8
3 -> 1 7 8 9 11
4 -> 2 6 8 9 10
5 -> 0 6 7 10 11
6 -> 0 2 4 5 10
7 -> 0 1 3 5 11
8 -> 1 2 3 4 9
9 -> 3 4 8 10 11
10 -> 4 5 6 9 11
11 -> 3 5 7 9 10
		

Crossrefs

Cf. A223233.

Formula

Empirical: a(n) = 7*a(n-1) + 30*a(n-2) for n>3.
Conjectures from Colin Barker, Aug 17 2018: (Start)
G.f.: x*(12 - 19*x - 30*x^2) / ((1 + 3*x)*(1 - 10*x)).
a(n) = (-25*(-1)^n*3^(1+n) + 49*10^n) / 65 for n>1.
(End)

A223235 Rolling icosahedron footprints: number of 3 X n 0..11 arrays starting with 0 where 0..11 label vertices of an icosahedron and every array movement to a horizontal, diagonal or antidiagonal neighbor moves along an icosahedral edge.

Original entry on oeis.org

144, 845, 25225, 492365, 11043445, 236027705, 5127809545, 110781320885, 2397904326205, 51869658014705, 1122255717889585, 24279356422739885, 525283571663978725, 11364402460546714985, 245867265513538637785
Offset: 1

Views

Author

R. H. Hardin, Mar 18 2013

Keywords

Comments

Row 3 of A223233.

Examples

			Some solutions for n=3:
..0..2..0....0..5..7....0..6..2....0..2..1....0..6..0....0..1..7....0..1..7
..0..5..0....0..5..6....0..6..5....1..2..6....0..6..0....0..1..3....0..1..8
.11..5..0....0..5..6....5..7..0....4..2..1....4..2..0....3..7..0....7..1..8
Vertex neighbors:
0 -> 1 2 5 6 7
1 -> 0 2 3 7 8
2 -> 0 1 4 6 8
3 -> 1 7 8 9 11
4 -> 2 6 8 9 10
5 -> 0 6 7 10 11
6 -> 0 2 4 5 10
7 -> 0 1 3 5 11
8 -> 1 2 3 4 9
9 -> 3 4 8 10 11
10 -> 4 5 6 9 11
11 -> 3 5 7 9 10
		

Crossrefs

Cf. A223233.

Formula

Empirical: a(n) = 18*a(n-1) + 103*a(n-2) - 552*a(n-3) + 540*a(n-4) for n>5.
Empirical g.f.: x*(144 - 1747*x - 4817*x^2 + 30768*x^3 - 28620*x^4) / (1 - 18*x - 103*x^2 + 552*x^3 - 540*x^4). - Colin Barker, Aug 17 2018

A223236 Rolling icosahedron footprints: number of 4Xn 0..11 arrays starting with 0 where 0..11 label vertices of an icosahedron and every array movement to a horizontal, diagonal or antidiagonal neighbor moves along an icosahedral edge.

Original entry on oeis.org

1728, 10985, 812225, 32837285, 1697263985, 78951770585, 3843057179285, 183367303999865, 8826695677742465, 423223089093370325, 20328307272501475145, 975647469218575594625, 46842159188887320714725
Offset: 1

Views

Author

R. H. Hardin Mar 18 2013

Keywords

Comments

Row 4 of A223233

Examples

			Some solutions for n=3
..0..6.10....0..6..0....0..6..4....0..6.10....0..6.10....0..6..2....0..6..0
..4..6..4....0..7..0....4..6..2...10..6..0....4..6..0....0..6..2....4..6..0
..5..6..2....3..7..1....5..6..0....4..6..4....5..6..2....2..6..4....2..6..4
..5..0..2....5..7..3....5..6..0....5.10..5....2..6..0....5..6..0...10..6..4
Vertex neighbors:
0 -> 1 2 5 6 7
1 -> 0 2 3 7 8
2 -> 0 1 4 6 8
3 -> 1 7 8 9 11
4 -> 2 6 8 9 10
5 -> 0 6 7 10 11
6 -> 0 2 4 5 10
7 -> 0 1 3 5 11
8 -> 1 2 3 4 9
9 -> 3 4 8 10 11
10 -> 4 5 6 9 11
11 -> 3 5 7 9 10
		

Formula

Empirical: a(n) = 32*a(n-1) +1042*a(n-2) -11074*a(n-3) -125832*a(n-4) +1314816*a(n-5) -820893*a(n-6) -14900218*a(n-7) +19327896*a(n-8) +41119416*a(n-9) -33578064*a(n-10) -26034048*a(n-11) +12597120*a(n-12) for n>13

A223237 Rolling icosahedron footprints: number of 5Xn 0..11 arrays starting with 0 where 0..11 label vertices of an icosahedron and every array movement to a horizontal, diagonal or antidiagonal neighbor moves along an icosahedral edge.

Original entry on oeis.org

20736, 142805, 26157625, 2191464605, 266409703885, 27049155640325, 3010781803380625, 319668431152592585, 34788800528856366205, 3737470592349481922045, 404261376372354175571785
Offset: 1

Views

Author

R. H. Hardin Mar 18 2013

Keywords

Comments

Row 5 of A223233

Examples

			Some solutions for n=3
..0..6..0....0..6..0....0..6..0....0..6..0....0..6..0....0..6..0....0..6..0
..0..6..0...10..6..0....4..6..0....0..6..0....4..6..0....0..6..0....4..6..0
..0..2..0....0..6..2....5..6..0....0..5.10...10..6..2....0..7..5....0..6..4
..0..5..0...10..6..4....0..7..5....0..5..6....5..6..4....0..6..5....4..2..0
..6..5..6...10..6..5....0..7.11....0..5.10....0..6..5....2..6..4....0..2..8
Vertex neighbors:
0 -> 1 2 5 6 7
1 -> 0 2 3 7 8
2 -> 0 1 4 6 8
3 -> 1 7 8 9 11
4 -> 2 6 8 9 10
5 -> 0 6 7 10 11
6 -> 0 2 4 5 10
7 -> 0 1 3 5 11
8 -> 1 2 3 4 9
9 -> 3 4 8 10 11
10 -> 4 5 6 9 11
11 -> 3 5 7 9 10
		

A223238 Rolling icosahedron footprints: number of 6Xn 0..11 arrays starting with 0 where 0..11 label vertices of an icosahedron and every array movement to a horizontal, diagonal or antidiagonal neighbor moves along an icosahedral edge.

Original entry on oeis.org

248832, 1856465, 842416625, 146259564725, 42210625593305, 9343721361109325, 2410480042269361205, 569856683384487837845, 141861478546517230929185, 34264186727962091778301265, 8425769874595179617059603645
Offset: 1

Views

Author

R. H. Hardin Mar 18 2013

Keywords

Comments

Row 6 of A223233

Examples

			Some solutions for n=3
..0..6..0....0..6..0....0..6..0....0..6..0....0..6..0....0..6..0....0..6..0
..0..6..0....0..6..0....0..6..0....0..6..0....0..6..0....0..6..0....0..6..0
..2..6..0....0..6..0....0..6..0....0..6..0....2..6..0....4..6..0....2..6..0
..0..6.10....0..7..5....0..5.10....2..1..0....4..6..4....4..2..0....0..6..2
.10..6.10....0..6..0...11..5.11....8..1..0....4..6..5....8..2..6....4..6..5
.10..4..2....0..7..0...11..5..6....8..1..0....5..6.10....1..2..1....4..6.10
Vertex neighbors:
0 -> 1 2 5 6 7
1 -> 0 2 3 7 8
2 -> 0 1 4 6 8
3 -> 1 7 8 9 11
4 -> 2 6 8 9 10
5 -> 0 6 7 10 11
6 -> 0 2 4 5 10
7 -> 0 1 3 5 11
8 -> 1 2 3 4 9
9 -> 3 4 8 10 11
10 -> 4 5 6 9 11
11 -> 3 5 7 9 10
		
Showing 1-10 of 10 results.