A223250 Two-loop graph coloring a rectangular array: number of n X 3 0..4 arrays where 0..4 label nodes of a graph with edges 0,1 1,2 2,0 0,3 3,4 4,0 and every array movement to a horizontal or vertical neighbor moves along an edge of this graph.
32, 236, 2172, 17828, 166892, 1382228, 12894316, 107283636, 996653548, 8326150836, 77047324460, 646086687220, 5957011569772, 50127570610868, 460630428892844, 3888717399278196, 35622664419652844, 301636706357260340
Offset: 1
Keywords
Examples
Some solutions for n=3: ..3..0..1....4..0..3....3..4..3....1..0..4....4..3..4....1..0..3....1..0..3 ..0..2..0....0..2..0....4..3..4....0..1..0....0..4..3....0..1..0....0..2..0 ..4..0..2....2..0..3....3..4..0....3..0..2....3..0..4....3..0..1....2..0..2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = 2*a(n-1) +75*a(n-2) -126*a(n-3) -70*a(n-4) +48*a(n-5).
Empirical g.f.: -4*x*(78*x^4 -46*x^3 -175*x^2 +43*x +8) / (48*x^5 -70*x^4 -126*x^3 +75*x^2 +2*x -1). - Colin Barker, May 03 2014
Comments