A223265 Rolling cube footprints: number of n X 4 0..5 arrays starting with 0 where 0..5 label faces of a cube and every array movement to a horizontal, diagonal or antidiagonal neighbor moves across a corresponding cube edge.
64, 6144, 622592, 63438848, 6467616768, 659411697664, 67231270567936, 6854664725200896, 698877628160933888, 71255117675418877952, 7264922488410118029312, 740706078202304288260096
Offset: 1
Keywords
Examples
Some solutions for n=3: ..0..3..5..1....0..4..2..0....0..3..0..1....0..3..5..2....0..3..4..3 ..0..3..5..2....0..4..2..0....0..1..0..3....0..2..0..3....0..2..0..2 ..0..2..1..2....0..4..3..4....0..1..0..4....0..3..5..3....1..2..1..2 Face neighbors: 0.->.1.2.3.4 1.->.0.2.3.5 2.->.0.1.4.5 3.->.0.1.4.5 4.->.0.3.2.5 5.->.1.3.4.2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A223269.
Formula
Empirical: a(n) = 112*a(n-1) - 1024*a(n-2).
Empirical g.f.: 64*x*(1 - 16*x) / (1 - 112*x + 1024*x^2). - Colin Barker, Aug 18 2018
Comments