A223267 Rolling cube footprints: number of nX6 0..5 arrays starting with 0 where 0..5 label faces of a cube and every array movement to a horizontal, diagonal or antidiagonal neighbor moves across a corresponding cube edge.
1024, 737280, 611319808, 522106961920, 450204914417664, 389343801904201728, 337035427916688654336, 291846966499723716853760, 252743669925904582659014656, 218887233158696603085046808576
Offset: 1
Keywords
Examples
Some solutions for n=3 ..0..3..0..2..1..3....0..3..0..2..4..2....0..3..0..2..0..2....0..3..0..2..1..3 ..0..3..0..2..0..2....0..3..0..2..4..2....0..3..0..1..5..1....0..3..0..3..0..2 ..0..3..0..4..5..1....0..3..0..3..1..3....0..3..0..4..3..4....0..3..0..2..5..1 Face neighbors: 0.->.1.2.3.4 1.->.0.2.3.5 2.->.0.1.4.5 3.->.0.1.4.5 4.->.0.3.2.5 5.->.1.3.4.2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = 1152*a(n-1) -229376*a(n-2) -21233664*a(n-3) +4697620480*a(n-4) +12884901888*a(n-5) -17798344474624*a(n-6) +343047627866112*a(n-7) +6755399441055744*a(n-8) -90071992547409920*a(n-9)
Comments