This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A223269 #6 Jul 23 2025 03:56:38 %S A223269 1,4,6,16,48,36,64,576,576,216,256,6144,20992,6912,1296,1024,67584, %T A223269 622592,765952,82944,7776,4096,737280,19726336,63438848,27951104, %U A223269 995328,46656,16384,8060928,611319808,5889851392,6467616768,1020002304,11943936 %N A223269 T(n,k)=Rolling cube face footprints: number of nXk 0..5 arrays starting with 0 where 0..5 label faces of a cube and every array movement to a horizontal, diagonal or antidiagonal neighbor moves across a corresponding cube edge. %C A223269 Table starts %C A223269 ....1......4.........16...........64.............256...............1024 %C A223269 ....6.....48........576.........6144...........67584.............737280 %C A223269 ...36....576......20992.......622592........19726336..........611319808 %C A223269 ..216...6912.....765952.....63438848......5889851392.......522106961920 %C A223269 .1296..82944...27951104...6467616768...1771674009600....450204914417664 %C A223269 .7776.995328.1020002304.659411697664.534392715870208.389343801904201728 %H A223269 R. H. Hardin, <a href="/A223269/b223269.txt">Table of n, a(n) for n = 1..311</a> %F A223269 Empirical for column k: %F A223269 k=1: a(n) = 6*a(n-1) %F A223269 k=2: a(n) = 12*a(n-1) %F A223269 k=3: a(n) = 40*a(n-1) -128*a(n-2) %F A223269 k=4: a(n) = 112*a(n-1) -1024*a(n-2) %F A223269 k=5: [order 6] %F A223269 k=6: [order 9] %F A223269 k=7: [order 19] %F A223269 Empirical for row n: %F A223269 n=1: a(n) = 4*a(n-1) %F A223269 n=2: a(n) = 8*a(n-1) +32*a(n-2) %F A223269 n=3: a(n) = 24*a(n-1) +256*a(n-2) -1024*a(n-3) for n>4 %F A223269 n=4: [order 6] for n>7 %F A223269 n=5: [order 10] for n>11 %F A223269 n=6: [order 23] for n>24 %e A223269 Some solutions for n=3 k=4 %e A223269 ..0..3..1..2....0..1..0..1....0..4..5..1....0..4..2..4....0..2..1..3 %e A223269 ..0..2..4..3....0..3..5..1....0..4..0..3....0..1..0..4....0..3..4..2 %e A223269 ..4..2..1..2....0..2..0..1....3..1..5..4....3..4..0..1....0..3..4..0 %e A223269 Face neighbors: %e A223269 0.->.1.2.3.4 %e A223269 1.->.0.2.3.5 %e A223269 2.->.0.1.4.5 %e A223269 3.->.0.1.4.5 %e A223269 4.->.0.3.2.5 %e A223269 5.->.1.3.4.2 %Y A223269 Column 1 is A000400(n-1) %Y A223269 Column 2 is 4*12^(n-1) %Y A223269 Column 3 is A223197 %Y A223269 Row 1 is A000302(n-1) %K A223269 nonn,tabl %O A223269 1,2 %A A223269 _R. H. Hardin_ Mar 19 2013