A223272 Rolling cube footprints: number of 4Xn 0..5 arrays starting with 0 where 0..5 label faces of a cube and every array movement to a horizontal, diagonal or antidiagonal neighbor moves across a corresponding cube edge.
216, 6912, 765952, 63438848, 5889851392, 522106961920, 47175115472896, 4228713130491904, 380326363447427072, 34157975785279848448, 3069635685131267080192, 275785779148632316968960
Offset: 1
Keywords
Examples
Some solutions for n=3 ..0..3..0....0..3..0....0..3..0....0..3..0....0..3..1....0..3..1....0..3..0 ..0..2..1....4..2..5....0..4..0....5..4..0....1..3..4....4..2..4....5..2..0 ..4..2..5....1..3..5....5..3..5....2..4..5....1..3..5....4..3..5....1..3..5 ..4..2..4....5..2..5....5..3..5....2..4..2....5..2..0....4..2..4....4..3..4 Face neighbors: 0.->.1.2.3.4 1.->.0.2.3.5 2.->.0.1.4.5 3.->.0.1.4.5 4.->.0.3.2.5 5.->.1.3.4.2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = 48*a(n-1) +4096*a(n-2) -12288*a(n-3) -1638400*a(n-4) +2097152*a(n-5) +67108864*a(n-6) for n>7
Comments