A223273 Rolling cube footprints: number of 5Xn 0..5 arrays starting with 0 where 0..5 label faces of a cube and every array movement to a horizontal, diagonal or antidiagonal neighbor moves across a corresponding cube edge.
1296, 82944, 27951104, 6467616768, 1771674009600, 450204914417664, 118579442837618688, 30710179999458000896, 8018710224241441112064, 2085564910060985598869504, 543463000691877698475130880
Offset: 1
Keywords
Examples
Some solutions for n=3 ..0..3..0....0..3..0....0..3..0....0..3..0....0..3..0....0..3..0....0..3..0 ..0..3..4....0..3..1....0..3..0....0..3..1....0..3..0....0..3..0....0..3..0 ..0..3..1....1..3..0....1..2..5....5..3..5....0..4..5....5..3..4....5..1..0 ..1..3..5....0..3..1....1..2..1....5..2..0....5..1..5....0..2..4....5..2..0 ..0..2..5....5..3..4....1..2..0....0..2..0....5..3..5....5..3..4....0..4..0 Face neighbors: 0.->.1.2.3.4 1.->.0.2.3.5 2.->.0.1.4.5 3.->.0.1.4.5 4.->.0.3.2.5 5.->.1.3.4.2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = 192*a(n-1) +31744*a(n-2) -3178496*a(n-3) -170917888*a(n-4) +13992198144*a(n-5) +99857989632*a(n-6) -17660905521152*a(n-7) +211106232532992*a(n-8) +2533274790395904*a(n-9) -40532396646334464*a(n-10) for n>11
Comments