cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A223277 Rolling icosahedron face footprints: number of n X 3 0..19 arrays starting with 0 where 0..19 label faces of an icosahedron and every array movement to a horizontal, diagonal or antidiagonal neighbor moves across an icosahedral edge.

Original entry on oeis.org

9, 87, 849, 8295, 81057, 792087, 7740273, 75637959, 739134273, 7222821495, 70581425169, 689721818919, 6739962906081, 65862930139863, 643612676665521, 6289384281642375, 61459874978079873, 600586013379170103
Offset: 1

Views

Author

R. H. Hardin, Mar 19 2013

Keywords

Comments

Column 3 of A223282.

Examples

			Some solutions for n=3:
..0..2..3....0..2..3....0..1..4....0..5..9....0..1..6....0..2..0....0..5..9
..0..2..3....8..2..3....0..1..4....0..5..0....0..1..0....3..2..8....9..5..9
..0..2..8....0..2..8....0..1..4....0..1..0....4..1..4....3..2..8....0..5..7
Face neighbors:
0 -> 1 2 5
1 -> 0 4 6
2 -> 0 3 8
3 -> 2 4 16
4 -> 3 1 17
5 -> 0 7 9
6 -> 1 7 10
7 -> 6 5 11
8 -> 2 9 13
9 -> 8 5 14
10 -> 6 12 17
11 -> 7 12 14
12 -> 11 10 19
13 -> 8 15 16
14 -> 9 11 15
15 -> 14 13 19
16 -> 3 13 18
17 -> 4 10 18
18 -> 16 17 19
19 -> 15 18 12
		

Crossrefs

Cf. A223282.

Formula

Empirical: a(n) = 11*a(n-1) - 12*a(n-2).
Conjectures from Colin Barker, Aug 18 2018: (Start)
G.f.: 3*x*(3 - 4*x) / (1 - 11*x + 12*x^2).
a(n) = (2^(-1-n)*((11-sqrt(73))^n*(-7+sqrt(73)) + (7+sqrt(73))*(11+sqrt(73))^n)) / sqrt(73).
(End)