This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A223279 #10 Aug 18 2018 17:34:04 %S A223279 81,1575,38457,1024071,28271577,792881031,22392745881,634400697159, %T A223279 17998034165721,510923724667143,14507984391789081,412013548109024967, %U A223279 11701449873880124505,332336795068373382279,9438910778776181239449 %N A223279 Rolling icosahedron face footprints: number of n X 5 0..19 arrays starting with 0 where 0..19 label faces of an icosahedron and every array movement to a horizontal, diagonal or antidiagonal neighbor moves across an icosahedral edge. %C A223279 Column 5 of A223282. %H A223279 R. H. Hardin, <a href="/A223279/b223279.txt">Table of n, a(n) for n = 1..210</a> %F A223279 Empirical: a(n) = 45*a(n-1) - 518*a(n-2) + 1268*a(n-3) + 1704*a(n-4) - 4064*a(n-5) + 1536*a(n-6). %F A223279 Empirical g.f.: 3*x*(9 - 68*x + 64*x^2)*(3 - 54*x - 76*x^2 + 56*x^3) / (1 - 45*x + 518*x^2 - 1268*x^3 - 1704*x^4 + 4064*x^5 - 1536*x^6). - _Colin Barker_, Aug 18 2018 %e A223279 Some solutions for n=3: %e A223279 0 1 0 1 4 0 1 0 5 9 0 5 0 2 0 0 1 4 1 6 %e A223279 6 1 0 1 0 0 5 0 5 7 0 5 0 2 8 4 1 4 1 4 %e A223279 0 1 0 1 6 9 5 0 5 9 9 5 0 2 3 6 1 6 1 6 %e A223279 Face neighbors: %e A223279 0 -> 1 2 5 %e A223279 1 -> 0 4 6 %e A223279 2 -> 0 3 8 %e A223279 3 -> 2 4 16 %e A223279 4 -> 3 1 17 %e A223279 5 -> 0 7 9 %e A223279 6 -> 1 7 10 %e A223279 7 -> 6 5 11 %e A223279 8 -> 2 9 13 %e A223279 9 -> 8 5 14 %e A223279 10 -> 6 12 17 %e A223279 11 -> 7 12 14 %e A223279 12 -> 11 10 19 %e A223279 13 -> 8 15 16 %e A223279 14 -> 9 11 15 %e A223279 15 -> 14 13 19 %e A223279 16 -> 3 13 18 %e A223279 17 -> 4 10 18 %e A223279 18 -> 16 17 19 %e A223279 19 -> 15 18 12 %Y A223279 Cf. A223282. %K A223279 nonn %O A223279 1,1 %A A223279 _R. H. Hardin_, Mar 19 2013