cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A223279 Rolling icosahedron face footprints: number of n X 5 0..19 arrays starting with 0 where 0..19 label faces of an icosahedron and every array movement to a horizontal, diagonal or antidiagonal neighbor moves across an icosahedral edge.

This page as a plain text file.
%I A223279 #10 Aug 18 2018 17:34:04
%S A223279 81,1575,38457,1024071,28271577,792881031,22392745881,634400697159,
%T A223279 17998034165721,510923724667143,14507984391789081,412013548109024967,
%U A223279 11701449873880124505,332336795068373382279,9438910778776181239449
%N A223279 Rolling icosahedron face footprints: number of n X 5 0..19 arrays starting with 0 where 0..19 label faces of an icosahedron and every array movement to a horizontal, diagonal or antidiagonal neighbor moves across an icosahedral edge.
%C A223279 Column 5 of A223282.
%H A223279 R. H. Hardin, <a href="/A223279/b223279.txt">Table of n, a(n) for n = 1..210</a>
%F A223279 Empirical: a(n) = 45*a(n-1) - 518*a(n-2) + 1268*a(n-3) + 1704*a(n-4) - 4064*a(n-5) + 1536*a(n-6).
%F A223279 Empirical g.f.: 3*x*(9 - 68*x + 64*x^2)*(3 - 54*x - 76*x^2 + 56*x^3) / (1 - 45*x + 518*x^2 - 1268*x^3 - 1704*x^4 + 4064*x^5 - 1536*x^6). - _Colin Barker_, Aug 18 2018
%e A223279 Some solutions for n=3:
%e A223279   0 1 0 1 4     0 1 0 5 9     0 5 0 2 0     0 1 4 1 6
%e A223279   6 1 0 1 0     0 5 0 5 7     0 5 0 2 8     4 1 4 1 4
%e A223279   0 1 0 1 6     9 5 0 5 9     9 5 0 2 3     6 1 6 1 6
%e A223279 Face neighbors:
%e A223279    0 ->  1  2  5
%e A223279    1 ->  0  4  6
%e A223279    2 ->  0  3  8
%e A223279    3 ->  2  4 16
%e A223279    4 ->  3  1 17
%e A223279    5 ->  0  7  9
%e A223279    6 ->  1  7 10
%e A223279    7 ->  6  5 11
%e A223279    8 ->  2  9 13
%e A223279    9 ->  8  5 14
%e A223279   10 ->  6 12 17
%e A223279   11 ->  7 12 14
%e A223279   12 -> 11 10 19
%e A223279   13 ->  8 15 16
%e A223279   14 ->  9 11 15
%e A223279   15 -> 14 13 19
%e A223279   16 ->  3 13 18
%e A223279   17 ->  4 10 18
%e A223279   18 -> 16 17 19
%e A223279   19 -> 15 18 12
%Y A223279 Cf. A223282.
%K A223279 nonn
%O A223279 1,1
%A A223279 _R. H. Hardin_, Mar 19 2013