cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A223285 Rolling icosahedron face footprints: number of 4 X n 0..19 arrays starting with 0 where 0..19 label faces of an icosahedron and every array movement to a horizontal, diagonal or antidiagonal neighbor moves across an icosahedral edge.

This page as a plain text file.
%I A223285 #9 Aug 18 2018 15:44:23
%S A223285 8000,375,8295,72279,1024071,10979127,137621799,1576368663,
%T A223285 19009505799,222545715447,2650002132711,31248496329687,
%U A223285 370552575553479,4379948164268727,51867287743753383,613557282050858391
%N A223285 Rolling icosahedron face footprints: number of 4 X n 0..19 arrays starting with 0 where 0..19 label faces of an icosahedron and every array movement to a horizontal, diagonal or antidiagonal neighbor moves across an icosahedral edge.
%C A223285 Row 4 of A223282.
%H A223285 R. H. Hardin, <a href="/A223285/b223285.txt">Table of n, a(n) for n = 1..210</a>
%F A223285 Empirical: a(n) = 5*a(n-1) + 92*a(n-2) - 56*a(n-3) - 920*a(n-4) + 192*a(n-5) + 1152*a(n-6) for n>7.
%F A223285 Empirical g.f.: x*(8000 - 39625*x - 729580*x^2 + 444304*x^3 + 7280536*x^4 - 1517376*x^5 - 9097344*x^6) / (1 - 5*x - 92*x^2 + 56*x^3 + 920*x^4 - 192*x^5 - 1152*x^6). - _Colin Barker_, Aug 18 2018
%e A223285 Some solutions for n=3:
%e A223285   0 1 0   0 2 0   0 2 8   0 5 7   0 1 4   0 2 3   0 1 4
%e A223285   4 1 4   0 2 8   8 2 3   9 5 9   4 1 0   8 2 0   6 1 6
%e A223285   6 1 4   0 2 3   0 2 8   9 5 0   0 1 6   0 2 8   6 1 6
%e A223285   6 1 0   8 2 8   3 2 0   9 5 0   6 1 6   0 2 8   4 1 0
%e A223285 Face neighbors:
%e A223285    0 ->  1  2  5
%e A223285    1 ->  0  4  6
%e A223285    2 ->  0  3  8
%e A223285    3 ->  2  4 16
%e A223285    4 ->  3  1 17
%e A223285    5 ->  0  7  9
%e A223285    6 ->  1  7 10
%e A223285    7 ->  6  5 11
%e A223285    8 ->  2  9 13
%e A223285    9 ->  8  5 14
%e A223285   10 ->  6 12 17
%e A223285   11 ->  7 12 14
%e A223285   12 -> 11 10 19
%e A223285   13 ->  8 15 16
%e A223285   14 ->  9 11 15
%e A223285   15 -> 14 13 19
%e A223285   16 ->  3 13 18
%e A223285   17 ->  4 10 18
%e A223285   18 -> 16 17 19
%e A223285   19 -> 15 18 12
%Y A223285 Cf. A223282.
%K A223285 nonn
%O A223285 1,1
%A A223285 _R. H. Hardin_, Mar 19 2013