cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A223299 4 X 4 X 4 triangular graph coloring a rectangular array: number of n X 2 0..9 arrays where 0..9 label nodes of a graph with edges 0,1 0,2 1,2 1,3 1,4 2,4 3,4 2,5 4,5 3,6 3,7 4,7 6,7 4,8 5,8 7,8 5,9 8,9 and every array movement to a horizontal or vertical neighbor moves along an edge of this graph.

Original entry on oeis.org

36, 324, 3132, 30564, 298620, 2918052, 28515132, 278649828, 2722966524, 26608833828, 260021573820, 2540931306084, 24829985481084, 242638664618916, 2371065485035068, 23170056359958756, 226417834139125500
Offset: 1

Views

Author

R. H. Hardin, Mar 19 2013

Keywords

Comments

Column 2 of A223305.

Examples

			Some solutions for n=3:
..0..2....2..0....8..9....5..4....7..8....0..2....4..8....3..4....3..4....1..3
..2..5....4..1....4..5....9..8....4..7....1..0....2..5....4..2....1..2....0..1
..5..2....1..2....1..4....5..9....7..3....0..2....1..2....8..4....2..1....1..3
		

Crossrefs

Cf. A223305.

Formula

Empirical: a(n) = 11*a(n-1) - 12*a(n-2).
Conjectures from Colin Barker, Aug 19 2018: (Start)
G.f.: 36*x*(1 - 2*x) / (1 - 11*x + 12*x^2).
a(n) = (3*2^(-n)*((11-sqrt(73))^n*(-1+sqrt(73)) + (1+sqrt(73))*(11+sqrt(73))^n)) / sqrt(73).
(End)