cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A223299 4 X 4 X 4 triangular graph coloring a rectangular array: number of n X 2 0..9 arrays where 0..9 label nodes of a graph with edges 0,1 0,2 1,2 1,3 1,4 2,4 3,4 2,5 4,5 3,6 3,7 4,7 6,7 4,8 5,8 7,8 5,9 8,9 and every array movement to a horizontal or vertical neighbor moves along an edge of this graph.

Original entry on oeis.org

36, 324, 3132, 30564, 298620, 2918052, 28515132, 278649828, 2722966524, 26608833828, 260021573820, 2540931306084, 24829985481084, 242638664618916, 2371065485035068, 23170056359958756, 226417834139125500
Offset: 1

Views

Author

R. H. Hardin, Mar 19 2013

Keywords

Comments

Column 2 of A223305.

Examples

			Some solutions for n=3:
..0..2....2..0....8..9....5..4....7..8....0..2....4..8....3..4....3..4....1..3
..2..5....4..1....4..5....9..8....4..7....1..0....2..5....4..2....1..2....0..1
..5..2....1..2....1..4....5..9....7..3....0..2....1..2....8..4....2..1....1..3
		

Crossrefs

Cf. A223305.

Formula

Empirical: a(n) = 11*a(n-1) - 12*a(n-2).
Conjectures from Colin Barker, Aug 19 2018: (Start)
G.f.: 36*x*(1 - 2*x) / (1 - 11*x + 12*x^2).
a(n) = (3*2^(-n)*((11-sqrt(73))^n*(-1+sqrt(73)) + (1+sqrt(73))*(11+sqrt(73))^n)) / sqrt(73).
(End)

A223300 4X4X4 triangular graph coloring a rectangular array: number of nX3 0..9 arrays where 0..9 label nodes of a graph with edges 0,1 0,2 1,2 1,3 1,4 2,4 3,4 2,5 4,5 3,6 3,7 4,7 6,7 4,8 5,8 7,8 5,9 8,9 and every array movement to a horizontal or vertical neighbor moves along an edge of this graph.

Original entry on oeis.org

144, 3132, 76788, 1882500, 46589268, 1148040516, 28402185108, 700525554180, 17321067229140, 427424478219972, 10564355081565972, 260773436696057988, 6443737539288281940, 159091220790299549508, 3930517719610405689492
Offset: 1

Views

Author

R. H. Hardin Mar 19 2013

Keywords

Comments

Column 3 of A223305

Examples

			Some solutions for n=3
..2..1..4....7..4..1....7..4..2....1..2..1....9..8..5....9..8..4....5..4..3
..4..3..7....4..1..4....6..3..1....2..1..0....5..9..8....8..4..8....4..3..4
..7..4..3....1..4..8....7..4..2....1..2..1....9..5..9....9..8..7....8..4..7
		

Formula

Empirical: a(n) = 10*a(n-1) +500*a(n-2) -2878*a(n-3) -15863*a(n-4) +79004*a(n-5) +144196*a(n-6) -616760*a(n-7) -363504*a(n-8) +1348864*a(n-9) +396544*a(n-10) -600576*a(n-11) for n>12

A223301 4X4X4 triangular graph coloring a rectangular array: number of nX4 0..9 arrays where 0..9 label nodes of a graph with edges 0,1 0,2 1,2 1,3 1,4 2,4 3,4 2,5 4,5 3,6 3,7 4,7 6,7 4,8 5,8 7,8 5,9 8,9 and every array movement to a horizontal or vertical neighbor moves along an edge of this graph.

Original entry on oeis.org

576, 30564, 1882500, 118001928, 7442199324, 470062209228, 29706324866280, 1877636655597516, 118686588470619204, 7502399551962981216, 474244299620974794852, 29978170786284871362588, 1894997177822538169880160
Offset: 1

Views

Author

R. H. Hardin Mar 19 2013

Keywords

Comments

Column 4 of A223305

Examples

			Some solutions for n=3
..1..4..3..7....0..2..5..9....0..1..4..8....1..3..1..4....5..2..5..2
..0..1..4..8....2..5..4..8....2..4..2..5....0..1..4..8....2..1..4..1
..1..3..7..4....5..4..8..9....4..7..4..2....2..4..8..7....4..3..1..4
		

Formula

Empirical: a(n) = 94*a(n-1) -1666*a(n-2) -33696*a(n-3) +1100794*a(n-4) -4373330*a(n-5) -96641317*a(n-6) +770139565*a(n-7) +2078815868*a(n-8) -30815999776*a(n-9) +9439379121*a(n-10) +508827706118*a(n-11) -740346550259*a(n-12) -3820163432470*a(n-13) +8313303065134*a(n-14) +11790417886127*a(n-15) -37600871363022*a(n-16) -5093748767428*a(n-17) +69398396589688*a(n-18) -28648799032000*a(n-19) -44260499027840*a(n-20) +28257350216960*a(n-21) +9517866926336*a(n-22) -7538371685376*a(n-23) -621543923712*a(n-24) +546106392576*a(n-25) for n>26

A223302 4X4X4 triangular graph coloring a rectangular array: number of nX5 0..9 arrays where 0..9 label nodes of a graph with edges 0,1 0,2 1,2 1,3 1,4 2,4 3,4 2,5 4,5 3,6 3,7 4,7 6,7 4,8 5,8 7,8 5,9 8,9 and every array movement to a horizontal or vertical neighbor moves along an edge of this graph.

Original entry on oeis.org

2304, 298620, 46589268, 7442199324, 1208825525124, 195984333263964, 31982581839418764, 5198236290762699924, 848677490133585108996, 138037800797986968319404, 22532346060071398807282764
Offset: 1

Views

Author

R. H. Hardin Mar 19 2013

Keywords

Comments

Column 5 of A223305

Examples

			Some solutions for n=3
..0..1..2..1..4....0..1..3..7..8....0..1..4..2..4....0..1..2..4..7
..1..2..5..4..2....1..2..1..4..5....1..0..2..4..2....1..2..4..3..4
..0..1..2..1..4....2..0..2..5..9....2..1..4..1..4....0..1..3..4..3
		

A223303 4X4X4 triangular graph coloring a rectangular array: number of nX6 0..9 arrays where 0..9 label nodes of a graph with edges 0,1 0,2 1,2 1,3 1,4 2,4 3,4 2,5 4,5 3,6 3,7 4,7 6,7 4,8 5,8 7,8 5,9 8,9 and every array movement to a horizontal or vertical neighbor moves along an edge of this graph.

Original entry on oeis.org

9216, 2918052, 1148040516, 470062209228, 195984333263964, 82235766550254744, 34624128327772135980, 14597586270725996512680, 6158981902609383720107172, 2599381915639470430301409024, 1097252078673262192056218956776
Offset: 1

Views

Author

R. H. Hardin Mar 19 2013

Keywords

Comments

Column 6 of A223305

Examples

			Some solutions for n=3
..0..1..0..1..4..8....0..1..0..2..4..7....0..1..4..1..3..1....0..1..4..1..3..1
..1..0..1..0..1..4....1..0..1..4..1..3....1..0..1..2..1..0....1..0..1..2..1..3
..0..1..2..1..4..2....0..1..3..7..3..1....0..1..2..1..3..1....0..1..0..1..4..1
		

A223304 4X4X4 triangular graph coloring a rectangular array: number of nX7 0..9 arrays where 0..9 label nodes of a graph with edges 0,1 0,2 1,2 1,3 1,4 2,4 3,4 2,5 4,5 3,6 3,7 4,7 6,7 4,8 5,8 7,8 5,9 8,9 and every array movement to a horizontal or vertical neighbor moves along an edge of this graph.

Original entry on oeis.org

36864, 28515132, 28402185108, 29706324866280, 31982581839418764, 34624128327772135980, 37878775658906097327552, 41350061045665728593745804, 45417884615768221932462708276, 49696230571397332338931201937088
Offset: 1

Views

Author

R. H. Hardin Mar 19 2013

Keywords

Comments

Column 7 of A223305

Examples

			Some solutions for n=3
..0..1..0..2..1..2..4....0..1..0..2..4..8..4....0..1..0..2..4..7..4
..1..0..1..4..3..4..3....1..0..1..4..2..4..1....1..0..1..0..2..4..5
..0..1..0..2..1..2..1....0..1..0..1..4..1..3....0..1..0..1..0..2..4
		

A223298 4X4X4 triangular graph coloring a rectangular array: number of n X n 0..9 arrays where 0..9 label nodes of a graph with edges 0,1 0,2 1,2 1,3 1,4 2,4 3,4 2,5 4,5 3,6 3,7 4,7 6,7 4,8 5,8 7,8 5,9 8,9 and every array movement to a horizontal or vertical neighbor moves along an edge of this graph.

Original entry on oeis.org

10, 324, 76788, 118001928, 1208825525124, 82235766550254744, 37878775658906097327552, 117618648410211422628657954648, 2498412967821017756764735962549014076
Offset: 1

Views

Author

R. H. Hardin Mar 19 2013

Keywords

Comments

Diagonal of A223305

Examples

			Some solutions for n=3
..2..5..8....1..2..4....4..1..3....7..8..4....4..7..3....8..7..6....8..4..8
..0..2..4....2..4..7....1..2..4....3..4..1....5..8..4....7..6..7....4..2..4
..2..0..1....4..1..4....0..1..2....4..2..4....9..5..2....4..3..6....5..4..1
		
Showing 1-7 of 7 results.