A223318 Rolling icosahedron footprints: number of n X 5 0..11 arrays starting with 0 where 0..11 label vertices of an icosahedron and every array movement to a horizontal or antidiagonal neighbor moves along an icosahedral edge.
625, 274625, 122039125, 54279694625, 24143758634125, 10739266230499625, 4776881955584279125, 2124782217358970404625, 945114307570509938324125, 420391815800244320602909625, 186992491150169573406883769125
Offset: 1
Keywords
Examples
Some solutions for n=3: ..0..6..2..6.10....0..6..2..6..0....0..6.10..6..0....0..6..0..1..3 ..0..6..0..6..2....0..6..0..6..2....0..6..0..2..4....0..6..2..8..2 ..0..1..0..1..3....0..1..2..1..0....0..2..4.10..4....0..1..2..4..8 Vertex neighbors: 0 -> 1 2 5 6 7 1 -> 0 2 3 7 8 2 -> 0 1 4 6 8 3 -> 1 7 8 9 11 4 -> 2 6 8 9 10 5 -> 0 6 7 10 11 6 -> 0 2 4 5 10 7 -> 0 1 3 5 11 8 -> 1 2 3 4 9 9 -> 3 4 8 10 11 10 -> 4 5 6 9 11 11 -> 3 5 7 9 10
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A223321.
Formula
Empirical: a(n) = 479*a(n-1) - 15210*a(n-2).
Conjectures from Colin Barker, Aug 19 2018: (Start)
G.f.: 125*x*(5 - 198*x) / (1 - 479*x + 15210*x^2).
a(n) = (25*2^(-1-n)*((479-sqrt(168601))^n*(-3181+11*sqrt(168601)) + (479+sqrt(168601))^n*(3181+11*sqrt(168601)))) / (169*sqrt(168601)).
(End)
Comments