A223320 Rolling icosahedron footprints: number of nX7 0..11 arrays starting with 0 where 0..11 label vertices of an icosahedron and every array movement to a horizontal or antidiagonal neighbor moves along an icosahedral edge.
15625, 46411625, 142980696625, 443803619416625, 1379464144963464625, 4288761014162797342625, 13334277936752000032650625, 41458126974532997739670258625, 128899204399783389165401518452625
Offset: 1
Keywords
Examples
Some solutions for n=3 ..0..6..0..6..0..1..2....0..6..0..6..0..1..2....0..6..0..6..0..6..2 ..0..6..0..6..0..1..3....0..6..0..6..2..6..5....0..6..0..6.10..6.10 ..0..6..0..7..3..7..1....0..6..0..6..4..6..4....0..6..0..6..5..6.10 Vertex neighbors: 0 -> 1 2 5 6 7 1 -> 0 2 3 7 8 2 -> 0 1 4 6 8 3 -> 1 7 8 9 11 4 -> 2 6 8 9 10 5 -> 0 6 7 10 11 6 -> 0 2 4 5 10 7 -> 0 1 3 5 11 8 -> 1 2 3 4 9 9 -> 3 4 8 10 11 10 -> 4 5 6 9 11 11 -> 3 5 7 9 10
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = 4313*a(n-1) -4293540*a(n-2) +1835925129*a(n-3) -400542201531*a(n-4) +46506128233194*a(n-5) -2762797384141236*a(n-6) +72983536818080616*a(n-7) -643864107456947520*a(n-8)
Comments