A223321 T(n,k)=Rolling icosahedron footprints: number of nXk 0..11 arrays starting with 0 where 0..11 label vertices of an icosahedron and every array movement to a horizontal or antidiagonal neighbor moves along an icosahedral edge.
1, 5, 12, 25, 125, 144, 125, 1625, 3125, 1728, 625, 21125, 105625, 78125, 20736, 3125, 274625, 3570125, 6865625, 1953125, 248832, 15625, 3570125, 122039125, 603351125, 446265625, 48828125, 2985984, 78125, 46411625, 4176940625, 54279694625
Offset: 1
Examples
Some solutions for n=3 k=4 ..0..1..8..9....0..1..0..7....0..1..0..2....0..1..0..6....0..6..2..4 ..0..2..8..2....0..5..0..5....0..6..0..2....0..6.10..5....0..1..2..4 ..6..2..4..2....0..1..0..7....0..7..0..7....0..6.10..5....0..6.10..4 Vertex neighbors: 0 -> 1 2 5 6 7 1 -> 0 2 3 7 8 2 -> 0 1 4 6 8 3 -> 1 7 8 9 11 4 -> 2 6 8 9 10 5 -> 0 6 7 10 11 6 -> 0 2 4 5 10 7 -> 0 1 3 5 11 8 -> 1 2 3 4 9 9 -> 3 4 8 10 11 10 -> 4 5 6 9 11 11 -> 3 5 7 9 10
Links
- R. H. Hardin, Table of n, a(n) for n = 1..97
Crossrefs
Formula
Empirical for column k:
k=1: a(n) = 12*a(n-1)
k=2: a(n) = 25*a(n-1)
k=3: a(n) = 65*a(n-1)
k=4: a(n) = 169*a(n-1)
k=5: a(n) = 479*a(n-1) -15210*a(n-2)
k=6: a(n) = 1366*a(n-1) -232713*a(n-2) +9253764*a(n-3)
k=7: [order 8]
Empirical for row n:
n=1: a(n) = 5*a(n-1)
n=2: a(n) = 13*a(n-1) for n>2
n=3: a(n) = 38*a(n-1) -129*a(n-2) for n>4
n=4: [order 7] for n>10
n=5: [order 32] for n>36
Comments