This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A223322 #9 Jun 29 2023 11:16:29 %S A223322 12,125,1625,21125,274625,3570125,46411625,603351125,7843564625, %T A223322 101966340125,1325562421625,17232311481125,224020049254625, %U A223322 2912260640310125,37859388324031625,492172048212411125 %N A223322 Rolling icosahedron footprints: number of 2 X n 0..11 arrays starting with 0 where 0..11 label vertices of an icosahedron and every array movement to a horizontal or antidiagonal neighbor moves along an icosahedral edge. %C A223322 Row 2 of A223321. %H A223322 R. H. Hardin, <a href="/A223322/b223322.txt">Table of n, a(n) for n = 1..210</a> %H A223322 <a href="/index/Rec#order_01">Index entries for linear recurrences with constant coefficients</a>, signature (13). %F A223322 Empirical: a(n) = 13*a(n-1) for n>2. %F A223322 Conjectures from _Colin Barker_, Aug 19 2018: (Start) %F A223322 G.f.: x*(12 - 31*x) / (1 - 13*x). %F A223322 a(n) = 125*13^(n-2) for n>1. %F A223322 (End) %e A223322 Some solutions for n=3: %e A223322 ..0..7..3....0..2..8....0..2..4....0..5.11....0..6..5....0..1..3....0..7..0 %e A223322 ..1..8..4....8..1..2....8..2..1...10..9..4....2..6..2....3.11..3....0..1..7 %e A223322 Vertex neighbors: %e A223322 0 -> 1 2 5 6 7 %e A223322 1 -> 0 2 3 7 8 %e A223322 2 -> 0 1 4 6 8 %e A223322 3 -> 1 7 8 9 11 %e A223322 4 -> 2 6 8 9 10 %e A223322 5 -> 0 6 7 10 11 %e A223322 6 -> 0 2 4 5 10 %e A223322 7 -> 0 1 3 5 11 %e A223322 8 -> 1 2 3 4 9 %e A223322 9 -> 3 4 8 10 11 %e A223322 10 -> 4 5 6 9 11 %e A223322 11 -> 3 5 7 9 10 %Y A223322 Cf. A223321. %K A223322 nonn %O A223322 1,1 %A A223322 _R. H. Hardin_, Mar 19 2013