A223324 Rolling icosahedron footprints: number of 4Xn 0..11 arrays starting with 0 where 0..11 label vertices of an icosahedron and every array movement to a horizontal or antidiagonal neighbor moves along an icosahedral edge.
1728, 78125, 6865625, 603351125, 54279694625, 4903804407125, 443803619416625, 40180564679055125, 3638107937069854625, 329414029399378035125, 29827030198435983748625, 2700711676390250182863125
Offset: 1
Keywords
Examples
Some solutions for n=3 ..0..6..0....0..6..0....0..6..0....0..6..0....0..6..0....0..6..0....0..6..0 ..0..5..7....0..1..3....0..1..8....0..6.10....0..7.11....0..6..5....0..1..2 ..0..5..6....3..8..2....2..1..3....4..9..8...11..7..0....2..0..2....0..6..0 .10..5..0....4..6..2....3..9.11....8..4..6....1..2..0....2..8..1....0..1..3 Vertex neighbors: 0 -> 1 2 5 6 7 1 -> 0 2 3 7 8 2 -> 0 1 4 6 8 3 -> 1 7 8 9 11 4 -> 2 6 8 9 10 5 -> 0 6 7 10 11 6 -> 0 2 4 5 10 7 -> 0 1 3 5 11 8 -> 1 2 3 4 9 9 -> 3 4 8 10 11 10 -> 4 5 6 9 11 11 -> 3 5 7 9 10
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = 121*a(n-1) -3029*a(n-2) +25559*a(n-3) -89707*a(n-4) +122263*a(n-5) -12831*a(n-6) -60039*a(n-7) for n>10
Comments