A223331 T(n,k)=Rolling cube footprints: number of nXk 0..7 arrays starting with 0 where 0..7 label vertices of a cube and every array movement to a horizontal or antidiagonal neighbor moves along a corresponding cube edge.
1, 3, 8, 9, 27, 64, 27, 189, 243, 512, 81, 1323, 3969, 2187, 4096, 243, 9261, 64827, 83349, 19683, 32768, 729, 64827, 1059723, 3176523, 1750329, 177147, 262144, 2187, 453789, 17324685, 121264857, 155649627, 36756909, 1594323, 2097152, 6561
Offset: 1
Examples
Some solutions for n=3 k=4 ..0..4..5..1....0..4..0..1....0..4..6..4....0..2..0..4....0..4..6..4 ..5..4..0..1....5..1..5..1....0..2..0..2....6..2..6..4....6..2..6..7 ..6..2..3..1....5..7..3..2....3..2..3..1....6..4..0..4....0..2..6..7 Vertex neighbors: 0 -> 1 2 4 1 -> 0 3 5 2 -> 0 3 6 3 -> 1 2 7 4 -> 0 5 6 5 -> 1 4 7 6 -> 2 4 7 7 -> 3 5 6
Links
- R. H. Hardin, Table of n, a(n) for n = 1..199
Crossrefs
Formula
Empirical for column k:
k=1: a(n) = 8*a(n-1)
k=2: a(n) = 9*a(n-1)
k=3: a(n) = 21*a(n-1)
k=4: a(n) = 49*a(n-1)
k=5: a(n) = 117*a(n-1) -294*a(n-2)
k=6: a(n) = 282*a(n-1) -3969*a(n-2) +9604*a(n-3)
k=7: a(n) = 692*a(n-1) -43569*a(n-2) +847042*a(n-3) -6303164*a(n-4) +15731352*a(n-5)
Empirical for row n:
n=1: a(n) = 3*a(n-1)
n=2: a(n) = 7*a(n-1) for n>2
n=3: a(n) = 18*a(n-1) -27*a(n-2) for n>4
n=4: a(n) = 48*a(n-1) -402*a(n-2) +1064*a(n-3) -789*a(n-4) for n>7
n=5: [order 9] for n>13
n=6: [order 20] for n>25
n=7: [order 51] for n>57
Comments