cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A223331 T(n,k)=Rolling cube footprints: number of nXk 0..7 arrays starting with 0 where 0..7 label vertices of a cube and every array movement to a horizontal or antidiagonal neighbor moves along a corresponding cube edge.

Original entry on oeis.org

1, 3, 8, 9, 27, 64, 27, 189, 243, 512, 81, 1323, 3969, 2187, 4096, 243, 9261, 64827, 83349, 19683, 32768, 729, 64827, 1059723, 3176523, 1750329, 177147, 262144, 2187, 453789, 17324685, 121264857, 155649627, 36756909, 1594323, 2097152, 6561
Offset: 1

Views

Author

R. H. Hardin Mar 19 2013

Keywords

Comments

Table starts
.........1..........3.............9................27....................81
.........8.........27...........189..............1323..................9261
........64........243..........3969.............64827...............1059723
.......512.......2187.........83349...........3176523.............121264857
......4096......19683.......1750329.........155649627...........13876429707
.....32768.....177147......36756909........7626831723.........1587890407761
....262144....1594323.....771895089......373714754427.......181703507374179
...2097152...14348907...16209796869....18312022966923.....20792470582897209
..16777216..129140163..340405734249...897289125379227...2379298227030964827
.134217728.1162261467.7148520419229.43967167143582123.272264906211251105313
Horizontal or vertical instead of horizontal or antidiagonal gives A222444

Examples

			Some solutions for n=3 k=4
..0..4..5..1....0..4..0..1....0..4..6..4....0..2..0..4....0..4..6..4
..5..4..0..1....5..1..5..1....0..2..0..2....6..2..6..4....6..2..6..7
..6..2..3..1....5..7..3..2....3..2..3..1....6..4..0..4....0..2..6..7
Vertex neighbors:
0 -> 1 2 4
1 -> 0 3 5
2 -> 0 3 6
3 -> 1 2 7
4 -> 0 5 6
5 -> 1 4 7
6 -> 2 4 7
7 -> 3 5 6
		

Crossrefs

Column 1 is A001018(n-1)
Column 2 is A013708(n-1)
Column 3 is 9*21^(n-1)
Column 4 is 27*49^(n-1)
Row 1 is A000244(n-1)
Row 2 is 27*7^(n-2) for n>1

Formula

Empirical for column k:
k=1: a(n) = 8*a(n-1)
k=2: a(n) = 9*a(n-1)
k=3: a(n) = 21*a(n-1)
k=4: a(n) = 49*a(n-1)
k=5: a(n) = 117*a(n-1) -294*a(n-2)
k=6: a(n) = 282*a(n-1) -3969*a(n-2) +9604*a(n-3)
k=7: a(n) = 692*a(n-1) -43569*a(n-2) +847042*a(n-3) -6303164*a(n-4) +15731352*a(n-5)
Empirical for row n:
n=1: a(n) = 3*a(n-1)
n=2: a(n) = 7*a(n-1) for n>2
n=3: a(n) = 18*a(n-1) -27*a(n-2) for n>4
n=4: a(n) = 48*a(n-1) -402*a(n-2) +1064*a(n-3) -789*a(n-4) for n>7
n=5: [order 9] for n>13
n=6: [order 20] for n>25
n=7: [order 51] for n>57