cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A223345 3X3X3 triangular graph without horizontal edges coloring a rectangular array: number of n X n 0..5 arrays where 0..5 label nodes of a graph with edges 0,1 0,2 1,3 1,4 2,4 2,5 and every array movement to a horizontal or vertical neighbor moves along an edge of this graph.

Original entry on oeis.org

6, 52, 2280, 405988, 329268616, 1079538816324, 16086247351158920, 968803030037550870052, 265167552942550197086665096, 293336730456466043837816011720516
Offset: 1

Views

Author

R. H. Hardin Mar 19 2013

Keywords

Comments

Diagonal of A223352

Examples

			Some solutions for n=3
..4..1..3....1..4..2....4..1..3....1..0..2....0..2..0....1..4..1....5..2..5
..1..3..1....0..2..5....2..4..1....0..2..5....2..5..2....0..1..4....2..5..2
..3..1..4....1..0..2....5..2..0....1..0..2....0..2..5....2..0..1....4..2..4
		

A223346 3 X 3 X 3 triangular graph without horizontal edges coloring a rectangular array: number of n X 1 0..5 arrays where 0..5 label nodes of a graph with edges 0,1 0,2 1,3 1,4 2,4 2,5 and every array movement to a horizontal or vertical neighbor moves along an edge of this graph.

Original entry on oeis.org

6, 12, 28, 60, 140, 300, 700, 1500, 3500, 7500, 17500, 37500, 87500, 187500, 437500, 937500, 2187500, 4687500, 10937500, 23437500, 54687500, 117187500, 273437500, 585937500, 1367187500, 2929687500, 6835937500, 14648437500, 34179687500
Offset: 1

Views

Author

R. H. Hardin, Mar 19 2013

Keywords

Comments

Column 1 of A223352.

Examples

			Some solutions for n=3:
  3  1  5  1  4  3  0  0  1  2  3  4  0  2  2  2
  1  4  2  4  2  1  2  2  0  0  1  2  1  4  4  0
  0  2  0  1  0  4  5  0  2  1  3  5  4  1  2  2
		

Programs

  • Mathematica
    Table[2*5^(1/2*(n - 3))*(15 + 7*Sqrt[5] + (-1)^n*(-15 + 7*Sqrt[5])), {n,1,20}] (* Pierre-Louis Giscard, May 17 2013 *)

Formula

From Pierre-Louis Giscard, May 17 2013: (Start)
a(n) = 2*5^((1/2)*(n-3))*(15 + 7*sqrt(5) + (-1)^n*(-15 + 7*sqrt(5))) for n > 0, a(0)=6.
G.f: 2*(x^2-6*x-3)/(5*x^2-1).
E.g.f.: (2/5)*(1 + 14*cosh(sqrt(5)*x) + 6*sqrt(5)*sinh(sqrt(5)*x)). (End)

A223347 3 X 3 X 3 triangular graph without horizontal edges coloring a rectangular array: number of n X 3 0..5 arrays where 0..5 label nodes of a graph with edges 0,1 0,2 1,3 1,4 2,4 2,5 and every array movement to a horizontal or vertical neighbor moves along an edge of this graph.

Original entry on oeis.org

28, 236, 2280, 20836, 202264, 1851020, 17970056, 164457412, 1596586328, 14611562156, 141852049992, 1298194798372, 12603142057880, 115340831992268, 1119752515193608, 10247697449986948, 99486754138704856, 910478112673392620
Offset: 1

Views

Author

R. H. Hardin, Mar 19 2013

Keywords

Comments

Column 3 of A223352.

Examples

			Some solutions for n=3:
..1..4..1....1..4..2....2..0..2....0..2..4....5..2..0....4..1..0....4..2..5
..0..2..4....0..2..0....4..1..0....1..4..1....2..5..2....1..4..1....2..5..2
..1..0..1....2..4..1....2..4..1....0..1..3....0..2..4....4..1..0....4..2..5
		

Crossrefs

Cf. A223352.

Formula

Empirical: a(n) = 91*a(n-2) - 192*a(n-4) + 64*a(n-6).
Empirical g.f.: 4*x*(7 + 59*x - 67*x^2 - 160*x^3 + 40*x^4 + 64*x^5) / (1 - 91*x^2 + 192*x^4 - 64*x^6). - Colin Barker, Aug 19 2018

A223348 3 X 3 X 3 triangular graph without horizontal edges coloring a rectangular array: number of n X 4 0..5 arrays where 0..5 label nodes of a graph with edges 0,1 0,2 1,3 1,4 2,4 2,5 and every array movement to a horizontal or vertical neighbor moves along an edge of this graph.

Original entry on oeis.org

60, 1076, 20836, 405988, 7918948, 154482340, 3013692516, 58792282660, 1146943179236, 22375024222628, 436500886445412, 8515433203445028, 166122463695945956, 3240783209292085412, 63222490059635217508
Offset: 1

Views

Author

R. H. Hardin, Mar 19 2013

Keywords

Comments

Column 4 of A223352.

Examples

			Some solutions for n=3:
..1..4..1..3....2..0..1..0....1..4..2..4....5..2..0..1....4..2..4..2
..4..2..0..1....4..2..0..1....0..2..4..2....2..0..1..3....1..4..2..4
..1..0..1..0....1..4..1..3....2..0..2..4....0..1..0..1....4..2..0..2
		

Crossrefs

Cf. A223352.

Formula

Empirical: a(n) = 23*a(n-1) - 66*a(n-2) - 52*a(n-3) + 208*a(n-4) + 32*a(n-5) - 128*a(n-6).
Empirical g.f.: 4*x*(1 - 4*x)*(15 - 16*x - 52*x^2 + 16*x^3 + 32*x^4) / (1 - 23*x + 66*x^2 + 52*x^3 - 208*x^4 - 32*x^5 + 128*x^6). - Colin Barker, Aug 19 2018

A223349 3X3X3 triangular graph without horizontal edges coloring a rectangular array: number of nX5 0..5 arrays where 0..5 label nodes of a graph with edges 0,1 0,2 1,3 1,4 2,4 2,5 and every array movement to a horizontal or vertical neighbor moves along an edge of this graph.

Original entry on oeis.org

140, 4908, 202264, 7918948, 329268616, 12912752876, 537001573656, 21060038730884, 875825392204488, 34348003384801484, 1428433095896220376, 56020099749013006372, 2329712263359378360328, 91366346681513601154476
Offset: 1

Views

Author

R. H. Hardin Mar 19 2013

Keywords

Comments

Column 5 of A223352

Examples

			Some solutions for n=3
..1..0..2..4..1....0..1..0..2..5....4..1..4..1..3....0..2..0..2..4
..3..1..0..2..0....1..4..2..5..2....1..3..1..0..1....2..0..2..4..2
..1..0..2..0..2....0..1..0..2..0....0..1..4..1..0....0..2..4..2..5
		

Formula

Empirical: a(n) = 1711*a(n-2) -132500*a(n-4) +3202240*a(n-6) -28936448*a(n-8) +102379520*a(n-10) -106561536*a(n-12) for n>13

A223350 3X3X3 triangular graph without horizontal edges coloring a rectangular array: number of nX6 0..5 arrays where 0..5 label nodes of a graph with edges 0,1 0,2 1,3 1,4 2,4 2,5 and every array movement to a horizontal or vertical neighbor moves along an edge of this graph.

Original entry on oeis.org

300, 22388, 1851020, 154482340, 12912752876, 1079538816324, 90254934876620, 7545802995190884, 630870570544801836, 52744249735952687492, 4409709467224003774348, 368675973859970441084836
Offset: 1

Views

Author

R. H. Hardin Mar 19 2013

Keywords

Comments

Column 6 of A223352

Examples

			Some solutions for n=3
..3..1..0..2..4..2....0..1..0..2..4..1....0..1..0..2..0..1....3..1..0..1..4..1
..1..0..1..4..2..4....2..0..1..0..2..0....1..4..1..4..1..4....1..4..1..3..1..3
..3..1..3..1..0..2....0..2..4..2..5..2....0..1..4..2..4..1....0..1..0..1..3..1
		

Formula

Empirical: a(n) = 105*a(n-1) -1690*a(n-2) -12608*a(n-3) +372616*a(n-4) -412320*a(n-5) -25492864*a(n-6) +95198976*a(n-7) +669344256*a(n-8) -3814535168*a(n-9) -4806082560*a(n-10) +56384290816*a(n-11) -49291067392*a(n-12) -244915896320*a(n-13) +525445627904*a(n-14) -268301238272*a(n-15) -40399536128*a(n-16) +53687091200*a(n-17) -8589934592*a(n-18)

A223351 3X3X3 triangular graph without horizontal edges coloring a rectangular array: number of nX7 0..5 arrays where 0..5 label nodes of a graph with edges 0,1 0,2 1,3 1,4 2,4 2,5 and every array movement to a horizontal or vertical neighbor moves along an edge of this graph.

Original entry on oeis.org

700, 102124, 17970056, 3013692516, 537001573656, 90254934876620, 16086247351158920, 2703767114101083332, 481898364416857970648, 80997279330454571309932, 14436325294811073087488072
Offset: 1

Views

Author

R. H. Hardin Mar 19 2013

Keywords

Comments

Column 7 of A223352

Examples

			Some solutions for n=3
..0..1..0..2..0..1..3....0..1..0..2..0..2..4....0..1..0..1..0..1..0
..1..3..1..0..2..4..1....1..0..1..0..1..0..2....1..0..1..4..2..0..2
..0..1..3..1..0..2..0....0..2..4..1..4..2..5....0..2..0..1..4..1..4
		

Formula

Empirical: a(n) = 32411*a(n-2) -75899152*a(n-4) +72830232672*a(n-6) -37138383320832*a(n-8) +11267693571807232*a(n-10) -2156486785001701376*a(n-12) +268134896419496787968*a(n-14) -21861109815107756490752*a(n-16) +1158919426002765454770176*a(n-18) -38882391728037610366435328*a(n-20) +785674063552141870019641344*a(n-22) -8851677936996895344820224000*a(n-24) +50604844225802475480926912512*a(n-26) -142492256277654023889441783808*a(n-28) +199942375039742209972462682112*a(n-30) -136858193061759279004901179392*a(n-32) +42178458483591906497874886656*a(n-34) -4502039752244879046605799424*a(n-36)
Showing 1-7 of 7 results.