A223357 T(n,k)=Rolling cube face footprints: number of nXk 0..5 arrays starting with 0 where 0..5 label faces of a cube and every array movement to a horizontal or antidiagonal neighbor moves across a corresponding cube edge.
1, 4, 6, 16, 64, 36, 64, 768, 1024, 216, 256, 9216, 36864, 16384, 1296, 1024, 110592, 1327104, 1769472, 262144, 7776, 4096, 1327104, 48365568, 191102976, 84934656, 4194304, 46656, 16384, 15925248, 1764753408, 21177040896, 27518828544
Offset: 1
Examples
Some solutions for n=3 k=4 ..0..2..0..2....0..3..5..2....0..2..5..4....0..4..0..4....0..1..3..4 ..0..4..0..1....0..3..5..3....0..4..0..1....0..4..0..4....0..1..0..1 ..0..4..5..4....0..1..0..1....0..4..2..1....0..2..0..1....0..1..2..4
Links
- R. H. Hardin, Table of n, a(n) for n = 1..241
Crossrefs
Formula
Empirical for column k:
k=1: a(n) = 6*a(n-1)
k=2: a(n) = 16*a(n-1)
k=3: a(n) = 48*a(n-1)
k=4: a(n) = 144*a(n-1)
k=5: a(n) = 480*a(n-1) -18432*a(n-2)
k=6: a(n) = 1600*a(n-1) -368640*a(n-2) +21233664*a(n-3)
k=7: a(n) = 5376*a(n-1) -5750784*a(n-2) +2038431744*a(n-3) -217432719360*a(n-4)
Empirical for row n:
n=1: a(n) = 4*a(n-1)
n=2: a(n) = 12*a(n-1) for n>2
n=3: a(n) = 40*a(n-1) -128*a(n-2) for n>4
n=4: a(n) = 144*a(n-1) -3840*a(n-2) +24576*a(n-3) for n>7
n=5: [order 7] for n>11
n=6: [order 9] for n>15
n=7: [order 27] for n>33
Comments