cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A223357 T(n,k)=Rolling cube face footprints: number of nXk 0..5 arrays starting with 0 where 0..5 label faces of a cube and every array movement to a horizontal or antidiagonal neighbor moves across a corresponding cube edge.

Original entry on oeis.org

1, 4, 6, 16, 64, 36, 64, 768, 1024, 216, 256, 9216, 36864, 16384, 1296, 1024, 110592, 1327104, 1769472, 262144, 7776, 4096, 1327104, 48365568, 191102976, 84934656, 4194304, 46656, 16384, 15925248, 1764753408, 21177040896, 27518828544
Offset: 1

Views

Author

R. H. Hardin Mar 19 2013

Keywords

Comments

Table starts
....1.......4.........16............64..............256................1024
....6......64........768..........9216...........110592.............1327104
...36....1024......36864.......1327104.........48365568..........1764753408
..216...16384....1769472.....191102976......21177040896.......2356125106176
.1296..262144...84934656...27518828544....9273505480704....3147420753985536
.7776.4194304.4076863488.3962711310336.4060947412942848.4204783428144463872

Examples

			Some solutions for n=3 k=4
..0..2..0..2....0..3..5..2....0..2..5..4....0..4..0..4....0..1..3..4
..0..4..0..1....0..3..5..3....0..4..0..1....0..4..0..4....0..1..0..1
..0..4..5..4....0..1..0..1....0..4..2..1....0..2..0..1....0..1..2..4
		

Crossrefs

Column 1 is A000400(n-1)
Column 2 is A013709 (n-1)
Column 3 is 16*48^(n-1)
Column 4 is 64*144^(n-1)
Row 1 is A000302(n-1)
Row 2 is 64*12^(n-2) for n>1

Formula

Empirical for column k:
k=1: a(n) = 6*a(n-1)
k=2: a(n) = 16*a(n-1)
k=3: a(n) = 48*a(n-1)
k=4: a(n) = 144*a(n-1)
k=5: a(n) = 480*a(n-1) -18432*a(n-2)
k=6: a(n) = 1600*a(n-1) -368640*a(n-2) +21233664*a(n-3)
k=7: a(n) = 5376*a(n-1) -5750784*a(n-2) +2038431744*a(n-3) -217432719360*a(n-4)
Empirical for row n:
n=1: a(n) = 4*a(n-1)
n=2: a(n) = 12*a(n-1) for n>2
n=3: a(n) = 40*a(n-1) -128*a(n-2) for n>4
n=4: a(n) = 144*a(n-1) -3840*a(n-2) +24576*a(n-3) for n>7
n=5: [order 7] for n>11
n=6: [order 9] for n>15
n=7: [order 27] for n>33