A223359 Rolling cube footprints: number of 4 X n 0..5 arrays starting with 0 where 0..5 label faces of a cube and every array movement to a horizontal or antidiagonal neighbor moves across a corresponding cube edge.
216, 16384, 1769472, 191102976, 21177040896, 2356125106176, 262687716016128, 29299957655666688, 3268377203523452928, 364590293218429501440, 40670509521269453488128, 4536850283257824395919360
Offset: 1
Keywords
Examples
Some solutions for n=3 ..0..3..0....0..3..0....0..3..0....0..3..0....0..3..0....0..3..0....0..3..0 ..4..3..5....0..4..3....4..2..1....5..1..2....0..2..5....5..3..4....0..4..3 ..4..2..4....0..4..2....5..3..1....0..1..3....0..2..0....0..3..1....2..5..1 ..1..2..4....3..1..3....5..2..4....3..1..0....4..2..4....5..3..4....1..5..2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A223357.
Formula
Empirical: a(n) = 144*a(n-1) -3840*a(n-2) +24576*a(n-3) for n>7.
Comments