A223360 Rolling cube footprints: number of 5Xn 0..5 arrays starting with 0 where 0..5 label faces of a cube and every array movement to a horizontal or antidiagonal neighbor moves across a corresponding cube edge.
1296, 262144, 84934656, 27518828544, 9273505480704, 3147420753985536, 1073434373061083136, 366633735578651197440, 125301697729353543057408, 42831316037653820665233408, 14641648774856138730026041344
Offset: 1
Keywords
Examples
Some solutions for n=3 ..0..3..0....0..3..0....0..3..0....0..3..0....0..3..0....0..3..0....0..3..0 ..0..3..0....0..3..0....0..3..0....0..3..0....0..3..0....0..3..0....0..3..0 ..1..2..5....4..2..1....5..1..2....1..2..0....0..1..3....4..2..0....5..4..2 ..1..2..1....0..2..1....2..0..4....5..4..3....0..1..2....1..2..5....5..4..2 ..4..2..5....0..2..1....4..2..1....3..5..4....5..1..3....0..3..1....0..4..2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = 512*a(n-1) -65536*a(n-2) +2490368*a(n-3) +17825792*a(n-4) -2818572288*a(n-5) +51539607552*a(n-6) -274877906944*a(n-7) for n>11
Comments