A223423 T(n,k)=3-level binary fanout graph coloring a rectangular array: number of nXk 0..6 arrays where 0..6 label nodes of a graph with edges 0,1 1,3 1,4 0,2 2,5 2,6 and every array movement to a horizontal or vertical neighbor moves along an edge of this graph.
7, 12, 12, 26, 40, 26, 48, 136, 136, 48, 104, 464, 868, 464, 104, 192, 1584, 4720, 4720, 1584, 192, 416, 5408, 29912, 47872, 29912, 5408, 416, 768, 18464, 163168, 486016, 486016, 163168, 18464, 768, 1664, 63040, 1033328, 4934272, 9210784, 4934272
Offset: 1
Examples
Some solutions for n=3 k=4 ..5..2..6..2....5..2..0..1....1..3..1..0....1..0..1..4....0..2..6..2 ..2..0..2..6....2..6..2..0....3..1..4..1....4..1..4..1....1..0..2..0 ..0..1..0..2....6..2..0..1....1..4..1..0....1..3..1..4....4..1..0..2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..544
Crossrefs
Column 2 is A056236(n+1)
Formula
Empirical for column k:
k=1: a(n) = 4*a(n-2) for n>3
k=2: a(n) = 4*a(n-1) -2*a(n-2)
k=3: a(n) = 38*a(n-2) -120*a(n-4) +32*a(n-6)
k=4: a(n) = 14*a(n-1) -36*a(n-2) -40*a(n-3) +88*a(n-4) +32*a(n-5) -32*a(n-6)
k=5: a(n) = 392*a(n-2) -26768*a(n-4) +353408*a(n-6) -1274624*a(n-8) +1441792*a(n-10) -307200*a(n-12) for n>13
k=6: [order 18]
k=7: [order 36]
Comments