cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A223423 T(n,k)=3-level binary fanout graph coloring a rectangular array: number of nXk 0..6 arrays where 0..6 label nodes of a graph with edges 0,1 1,3 1,4 0,2 2,5 2,6 and every array movement to a horizontal or vertical neighbor moves along an edge of this graph.

Original entry on oeis.org

7, 12, 12, 26, 40, 26, 48, 136, 136, 48, 104, 464, 868, 464, 104, 192, 1584, 4720, 4720, 1584, 192, 416, 5408, 29912, 47872, 29912, 5408, 416, 768, 18464, 163168, 486016, 486016, 163168, 18464, 768, 1664, 63040, 1033328, 4934272, 9210784, 4934272
Offset: 1

Views

Author

R. H. Hardin Mar 20 2013

Keywords

Comments

Table starts
....7.....12........26..........48............104..............192
...12.....40.......136.........464...........1584.............5408
...26....136.......868........4720..........29912...........163168
...48....464......4720.......47872.........486016..........4934272
..104...1584.....29912......486016........9210784........150006016
..192...5408....163168.....4934272......150006016.......4565849088
..416..18464...1033328....50097024.....2844612736.....139114196992
..768..63040...5638336...508632832....46345527296....4240305623040
.1664.215232..35704800..5164146176...878977950208..129279082045440
.3072.734848.194827648.52431620096.14321836797952.3941937218551808

Examples

			Some solutions for n=3 k=4
..5..2..6..2....5..2..0..1....1..3..1..0....1..0..1..4....0..2..6..2
..2..0..2..6....2..6..2..0....3..1..4..1....4..1..4..1....1..0..2..0
..0..1..0..2....6..2..0..1....1..4..1..0....1..3..1..4....4..1..0..2
		

Crossrefs

Column 2 is A056236(n+1)

Formula

Empirical for column k:
k=1: a(n) = 4*a(n-2) for n>3
k=2: a(n) = 4*a(n-1) -2*a(n-2)
k=3: a(n) = 38*a(n-2) -120*a(n-4) +32*a(n-6)
k=4: a(n) = 14*a(n-1) -36*a(n-2) -40*a(n-3) +88*a(n-4) +32*a(n-5) -32*a(n-6)
k=5: a(n) = 392*a(n-2) -26768*a(n-4) +353408*a(n-6) -1274624*a(n-8) +1441792*a(n-10) -307200*a(n-12) for n>13
k=6: [order 18]
k=7: [order 36]