A223435 Generalized Petersen graph (8,2) coloring a rectangular array: number of nX3 0..15 arrays where 0..15 label nodes of a graph with edges 0,1 0,8 8,14 8,10 1,2 1,9 9,15 9,11 2,3 2,10 10,12 3,4 3,11 11,13 4,5 4,12 12,14 5,6 5,13 13,15 6,7 6,14 7,0 7,15 and every array movement to a horizontal or vertical neighbor moves along an edge of this graph.
144, 1376, 14112, 147520, 1562176, 16693920, 179532768, 1939216640, 21008925952, 228065409888, 2479179661472, 26974655289536, 293678536506304, 3198664399776288, 34848651790913888, 379738193353123456
Offset: 1
Keywords
Examples
Some solutions for n=3 .13.11.13....9.11..9...12..4..5....9.15.13....6..5.13....5..6.14....6..5..6 .15..9.11....1..9..1....4..3..4...15..9.11....7..6..5....6.14.12....5..6..7 .13.11.13....0..1..2....5..4.12....9.15.13....0..7..6...14.12.14....6.14..6
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = 15*a(n-1) -18*a(n-2) -310*a(n-3) +167*a(n-4) +475*a(n-5) -244*a(n-6) -100*a(n-7) +48*a(n-8)
Comments