This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A223456 #34 Jul 16 2015 22:28:34 %S A223456 16,36,48,64,80,81,100,112,120,144,162,168,176,196,208,210,216,225, %T A223456 256,264,270,272,280,304,312,324,330,368,378,384,390,400,405,408,440, %U A223456 441,456,462,464,484,496,510,512,520,546,552,567,570,576,592,594,616,625 %N A223456 Composite numbers whose number of proper divisors has a prime number of proper divisors. %H A223456 Reinhard Zumkeller, <a href="/A223456/b223456.txt">Table of n, a(n) for n = 1..10000</a> %F A223456 { n: n in A002808 and A032741(A032741(n)) in A000040}. %F A223456 (1 - A010051(a(n))) * A010051(a032741(a032741(a(n)))) = 1. - _Reinhard Zumkeller_, Sep 22 2013 %e A223456 a(1) = 16, which has 4 proper divisors (1, 2, 4, 8). 4 has 2 proper divisors, 2 is prime. 2 steps were needed. %p A223456 isA223456 := proc(n) %p A223456 local npd ; %p A223456 if not isprime(n) and n >=4 then %p A223456 npd := A032741(n) ; %p A223456 if isprime( A032741(npd)) then %p A223456 true; %p A223456 else %p A223456 false; %p A223456 end if ; %p A223456 else %p A223456 false; %p A223456 end if; %p A223456 end proc: %p A223456 for n from 16 to 630 do %p A223456 if isA223456(n) then %p A223456 printf("%d,",n) ; %p A223456 end if; %p A223456 end do: # _R. J. Mathar_, Sep 18 2013 %t A223456 Select[Range[1000], PrimeQ[DivisorSigma[0, DivisorSigma[0, #] - 1] - 1] &] (* _Alonso del Arte_, Jul 21 2013 *) %o A223456 (C#) %o A223456 // data %o A223456 uint size = Math.Power(2,30); %o A223456 uint[] divisors = new uint[size] %o A223456 List<uint> A000040 = new List<uint>(); %o A223456 List<uint> A063806 = new List<uint>(); %o A223456 List<uint> A223456 = new List<uint>(); %o A223456 List<uint> A223457 = new List<uint>(); %o A223456 // calculate %o A223456 for( uint i = 1; i < size; i++ ) %o A223456 for( uint j = i * 2; j < size; j += i ) %o A223456 divisors[j]++; %o A223456 // assign %o A223456 for( uint i = 2; i < size; i++ ) %o A223456 if( divisors[i] == 1 ) %o A223456 // A000040: Numbers with a only one proper divisor. %o A223456 A000040.Add( i ); %o A223456 else if( divisors[divisors[i]] == 1 ) %o A223456 // A063806: Numbers with a prime number of proper divisors. %o A223456 A063806.Add( i ); %o A223456 else if( divisors[divisors[divisors[i]]] == 1 ) %o A223456 // Numbers with a nonprime number of proper divisors %o A223456 // which itself has prime number of proper divisors. %o A223456 A223456.Add( i ); %o A223456 else if( divisors[divisors[divisors[divisors[i]]]] == 1 ) %o A223456 // Numbers with a nonprime number of proper divisors %o A223456 // which itself has a nonprime number of proper divisors %o A223456 // which itself has prime number of proper divisors. %o A223456 A223457.Add( i ); %o A223456 (Haskell) %o A223456 a223456 n = a223456_list !! (n-1) %o A223456 a223456_list = filter ((== 1 ) . a010051 . a032741 . a032741) a002808_list %o A223456 -- _Reinhard Zumkeller_, Sep 22 2013 %Y A223456 Cf. A000040, A063806, A032741. %K A223456 nonn,easy %O A223456 1,1 %A A223456 _Christopher J. Hanson_, Jul 19 2013