This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A223457 #26 Apr 21 2016 13:42:49 %S A223457 44100,46656,57600,65536,108900,112896,152100,213444,260100,278784, %T A223457 298116,313600,324900,331776,389376,476100,509796,592900,636804, %U A223457 656100,665856,736164,756900,774400,828100,831744,864900,933156,1000000,1081600,1218816,1232100 %N A223457 Composite numbers whose number of proper divisors has a number of proper divisors which has a prime number of proper divisors. %F A223457 {n in A002808 : A032741(A032741(A032741(n))) is prime}. %e A223457 a(1) = 44100, which has 80 divisors. 80 has 9 divisors. 9 has 2 divisors, 2 is prime. 3 steps were needed. %t A223457 d3Q[n_]:=PrimeQ[Nest[DivisorSigma[0,#]-1&,n,3]]; Select[Range[13*10^5],d3Q] (* _Harvey P. Dale_, Apr 21 2016 *) %o A223457 // data %o A223457 uint size = Math.Power(2,30); %o A223457 uint[] divisors = new uint[size] %o A223457 List<uint> A000040 = new List<uint>(); %o A223457 List<uint> A063806 = new List<uint>(); %o A223457 List<uint> A223456 = new List<uint>(); %o A223457 List<uint> A223457 = new List<uint>(); %o A223457 // calculate %o A223457 for( uint i = 1; i < size; i++ ) %o A223457 for( uint j = i * 2; j < size; j += i ) %o A223457 divisors[j]++; %o A223457 // assign %o A223457 for( uint i = 2; i < size; i++ ) %o A223457 if( divisors[i] == 1 ) %o A223457 // A000040: Numbers with a only one proper divisor. %o A223457 A000040.Add( i ); %o A223457 else if( divisors[divisors[i]] == 1 ) %o A223457 // A063806: Numbers with a prime number of proper divisors. %o A223457 A063806.Add( i ); %o A223457 else if( divisors[divisors[divisors[i]]] == 1 ) %o A223457 // Numbers with a nonprime number of proper divisors %o A223457 // which itself has prime number of proper divisors. %o A223457 A223456.Add( i ); %o A223457 else if( divisors[divisors[divisors[divisors[i]]]] == 1 ) %o A223457 // Numbers with a nonprime number of proper divisors %o A223457 // which itself has a nonprime number of proper divisors %o A223457 // which itself has prime number of proper divisors. %o A223457 A223457.Add( i ); %o A223457 else %o A223457 Explode( "Conjecture is incorrect" ); %Y A223457 Cf. A000040, A063806, A032741, A223456. %K A223457 nonn %O A223457 1,1 %A A223457 _Christopher J. Hanson_, Jul 19 2013