cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A223475 Least k such that the decimal representation of k*n has digits in nonincreasing order.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 4, 3, 2, 2, 3, 3, 4, 1, 1, 1, 4, 3, 2, 2, 2, 3, 3, 1, 1, 1, 1, 13, 2, 2, 2, 2, 17, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 15, 13, 9, 9, 1, 1, 1, 1, 1, 1, 1, 13, 8, 8, 1, 1, 1, 1, 1, 1, 1, 1, 84, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 86, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 5, 7, 5, 2, 5, 3, 4, 6, 1, 1, 75, 47, 38, 8, 45, 56, 8, 7, 5, 55, 5, 7
Offset: 1

Views

Author

Paul Tek, Mar 20 2013

Keywords

Examples

			39*17 = 663 has digits in nonincreasing order, and no k < 17 has this property, hence a(39) = 17.
		

Crossrefs

a(n)*n yields sequence A223474.
Cf. A009996.

Programs

  • Mathematica
    a[n_] := a[nn_] := Block[{n = nn, f, w = Range@9, k = 1}, While[Mod[n, 10] == 0, n /= 10]; While[(f = Select[w, Max@ Differences@ IntegerDigits[n*#] <= 0 &, 1]) == {}, k++; w = Union@ Flatten@Table[ Select[d*10^(k-1) + w, Max@ Differences@ IntegerDigits[Mod[n*#, 10^k], 10, k] <= 0 &], {d, 0, 9}]]; f[[1]]]; Array[a, 123] (* faster than basic approach. Giovanni Resta, Mar 26 2013 *)