A223479 Rolling icosahedron face footprints: number of nX7 0..19 arrays starting with 0 where 0..19 label faces of an icosahedron and every array movement to a horizontal or antidiagonal neighbor moves across an icosahedral edge.
729, 84375, 11374425, 1588785975, 223894186425, 31621425535575, 4468456626780825, 631526586023769975, 89256484380983132025, 12615117535169199386775, 1782968370270784918644825
Offset: 1
Keywords
Examples
Some solutions for n=3 ..0..5..0..5..7.11..7....0..5..0..1..4..1..6....0..5..0..5..0..2..0 ..0..5..0..5..7..5..9....0..5..0..1..6..1..0....0..5..0..1..0..2..8 ..0..5..9..5..9..5..7....0..1..0..1..0..5..0....0..1..4..1..0..2..0 Face neighbors: 0 -> 1 2 5 1 -> 0 4 6 2 -> 0 3 8 3 -> 2 4 16 4 -> 3 1 17 5 -> 0 7 9 6 -> 1 7 10 7 -> 6 5 11 8 -> 2 9 13 9 -> 8 5 14 10 -> 6 12 17 11 -> 7 12 14 12 -> 11 10 19 13 -> 8 15 16 14 -> 9 11 15 15 -> 14 13 19 16 -> 3 13 18 17 -> 4 10 18 18 -> 16 17 19 19 -> 15 18 12
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = 227*a(n-1) -14764*a(n-2) +411840*a(n-3) -5347200*a(n-4) +29600000*a(n-5) -48000000*a(n-6)
Comments