A223482 Rolling icosahedron face footprints: number of 4 X n 0..19 arrays starting with 0 where 0..19 label faces of an icosahedron and every array movement to a horizontal or antidiagonal neighbor moves across an icosahedral edge.
8000, 2187, 30375, 421875, 6526575, 101331675, 1588785975, 24919035075, 390919514175, 6132664672875, 96208422848775, 1509305488830675, 23677794878309775, 371454275512532475, 5827328087571285975
Offset: 1
Keywords
Examples
Some solutions for n=3: ..0..2..3....0..5..9....0..2..8....0..5..9....0..1..6....0..2..3....0..1..4 ..0..2..8....7..5..7....3..2..8....9..5..7....6.10..6....8..2..0....0..1..6 ..8..2..0....7..6..1....0..2..8....7..6..7....6..7..6....0..1..6....6..7.11 ..8..2..8....7..6..7....8..2..8....7..5..9....6.10.12....6..1..0....6..7..6 Face neighbors: 0 -> 1 2 5 1 -> 0 4 6 2 -> 0 3 8 3 -> 2 4 16 4 -> 3 1 17 5 -> 0 7 9 6 -> 1 7 10 7 -> 6 5 11 8 -> 2 9 13 9 -> 8 5 14 10 -> 6 12 17 11 -> 7 12 14 12 -> 11 10 19 13 -> 8 15 16 14 -> 9 11 15 15 -> 14 13 19 16 -> 3 13 18 17 -> 4 10 18 18 -> 16 17 19 19 -> 15 18 12
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A223480.
Formula
Empirical: a(n) = 17*a(n-1) - 16*a(n-2) - 76*a(n-3) + 64*a(n-4) for n>7.
Empirical g.f.: x*(8000 - 133813*x + 121196*x^2 + 548492*x^3 - 505088*x^4 - 701568*x^5 + 691200*x^6) / ((1 + 2*x)*(1 - 19*x + 54*x^2 - 32*x^3)). - Colin Barker, Aug 20 2018
Comments