cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A223485 Rolling icosahedron face footprints: number of 7Xn 0..19 arrays starting with 0 where 0..19 label faces of an icosahedron and every array movement to a horizontal or antidiagonal neighbor moves across an icosahedral edge.

This page as a plain text file.
%I A223485 #6 Jul 23 2025 04:12:47
%S A223485 64000000,1594323,102515625,6591796875,563999907825,48783753036675,
%T A223485 4468456626780825,409807503225524475,38120535124295537025,
%U A223485 3545335226678204077875,330863549667143315488425
%N A223485 Rolling icosahedron face footprints: number of 7Xn 0..19 arrays starting with 0 where 0..19 label faces of an icosahedron and every array movement to a horizontal or antidiagonal neighbor moves across an icosahedral edge.
%C A223485 Row 7 of A223480
%H A223485 R. H. Hardin, <a href="/A223485/b223485.txt">Table of n, a(n) for n = 1..36</a>
%e A223485 Some solutions for n=3
%e A223485 ..0..5..0....0..5..0....0..5..0....0..5..0....0..5..0....0..5..0....0..5..0
%e A223485 ..0..1..0....0..1..0....0..1..0....0..1..0....0..1..0....0..1..0....0..1..0
%e A223485 ..0..1..0....0..1..0....0..1..0....0..1..0....0..1..0....0..1..0....0..1..4
%e A223485 ..0..5..7....4..1..4....4..1..6....4..1..4....6..1..4....4..1..6....4.17..4
%e A223485 ..7..5..7....6..1..0....6..7..5....6..1..6....6..1..6....0..1..4....4..3.16
%e A223485 ..9..5..7....0..5..9...11..7.11....0..1..0....0..1..0....4.17.18....2..3..4
%e A223485 ..0..5..9....9.14.11...11.12.10....6..1..0....0..5..9....4.17.10...16..3..2
%e A223485 Face neighbors:
%e A223485 0 -> 1 2 5
%e A223485 1 -> 0 4 6
%e A223485 2 -> 0 3 8
%e A223485 3 -> 2 4 16
%e A223485 4 -> 3 1 17
%e A223485 5 -> 0 7 9
%e A223485 6 -> 1 7 10
%e A223485 7 -> 6 5 11
%e A223485 8 -> 2 9 13
%e A223485 9 -> 8 5 14
%e A223485 10 -> 6 12 17
%e A223485 11 -> 7 12 14
%e A223485 12 -> 11 10 19
%e A223485 13 -> 8 15 16
%e A223485 14 -> 9 11 15
%e A223485 15 -> 14 13 19
%e A223485 16 -> 3 13 18
%e A223485 17 -> 4 10 18
%e A223485 18 -> 16 17 19
%e A223485 19 -> 15 18 12
%K A223485 nonn
%O A223485 1,1
%A A223485 _R. H. Hardin_ Mar 20 2013