A223500 Petersen graph (3,1) coloring a rectangular array: number of nX4 0..5 arrays where 0..5 label nodes of a graph with edges 0,1 0,3 3,5 3,4 1,2 1,4 4,5 2,0 2,5 and every array movement to a horizontal, diagonal or antidiagonal neighbor moves along an edge of this graph, with the array starting at 0.
27, 631, 16323, 426359, 11148439, 291545903, 7624417031, 199391762123, 5214442630935, 136366781617267, 3566229514618067, 93263130563653603, 2438993757290874987, 63783946691623236183, 1668061610819558039475
Offset: 1
Keywords
Examples
Some solutions for n=3 ..0..1..4..1....0..1..2..1....0..3..5..4....0..3..0..3....0..1..0..3 ..4..3..4..3....4..1..4..5....5..3..5..3....4..3..4..1....0..1..4..1 ..0..3..0..1....4..5..2..1....0..3..5..2....5..3..0..1....0..3..4..3
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = 31*a(n-1) -127*a(n-2) -20*a(n-3) +705*a(n-4) -1027*a(n-5) +499*a(n-6) -60*a(n-7)
Comments