A223501 Petersen graph (3,1) coloring a rectangular array: number of nX5 0..5 arrays where 0..5 label nodes of a graph with edges 0,1 0,3 3,5 3,4 1,2 1,4 4,5 2,0 2,5 and every array movement to a horizontal, diagonal or antidiagonal neighbor moves along an edge of this graph, with the array starting at 0.
81, 3539, 182901, 9685063, 515473927, 27465794119, 1463848507173, 78024299447333, 4158831849750231, 221674060909378867, 11815685765605683663, 629800688938588467995, 33569692923595929936491, 1789334831509984492336661
Offset: 1
Keywords
Examples
Some solutions for n=3 ..0..2..0..2..0....0..3..5..3..5....0..3..4..5..3....0..3..0..3..4 ..0..2..5..2..5....0..3..5..2..0....0..1..4..5..3....0..3..0..1..4 ..5..2..1..2..5....5..2..0..2..1....4..1..2..5..3....4..3..0..1..2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = 80*a(n-1) -1601*a(n-2) +9025*a(n-3) +32750*a(n-4) -458870*a(n-5) +1007560*a(n-6) +2753424*a(n-7) -13680802*a(n-8) +9570798*a(n-9) +33912359*a(n-10) -66671806*a(n-11) +25819908*a(n-12) +31393403*a(n-13) -30099964*a(n-14) +2740719*a(n-15) +5650986*a(n-16) -2070082*a(n-17) -348*a(n-18) +116444*a(n-19) -20740*a(n-20) +1120*a(n-21)
Comments