cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A223499 Petersen graph (3,1) coloring a rectangular array: number of n X 3 0..5 arrays where 0..5 label nodes of a graph with edges 0,1 0,3 3,5 3,4 1,2 1,4 4,5 2,0 2,5 and every array movement to a horizontal, diagonal or antidiagonal neighbor moves along an edge of this graph, with the array starting at 0.

Original entry on oeis.org

9, 115, 1519, 20115, 266419, 3528715, 46737819, 619042315, 8199214219, 108598575915, 1438387920619, 19051445129515, 252336352607019, 3342194485203115, 44267359266773419, 586321084882796715
Offset: 1

Views

Author

R. H. Hardin, Mar 21 2013

Keywords

Comments

Column 3 of A223504.

Examples

			Some solutions for n=3:
..0..1..4....0..3..4....0..1..4....0..2..5....0..1..4....0..3..4....0..3..0
..0..3..0....4..3..5....2..1..0....0..3..0....4..3..0....4..3..4....4..3..0
..5..2..5....5..3..4....4..1..4....0..1..0....0..3..4....5..3..4....5..3..0
		

Crossrefs

Cf. A223504.

Formula

Empirical: a(n) = 15*a(n-1) - 24*a(n-2) + 10*a(n-3).
Conjectures from Colin Barker, Aug 21 2018: (Start)
G.f.: x*(9 - 20*x + 10*x^2) / ((1 - x)*(1 - 14*x + 10*x^2)).
a(n) = (13 + (13-2*sqrt(39))*(7-sqrt(39))^n + (7+sqrt(39))^n*(13+2*sqrt(39))) / 39.
(End)

A223500 Petersen graph (3,1) coloring a rectangular array: number of nX4 0..5 arrays where 0..5 label nodes of a graph with edges 0,1 0,3 3,5 3,4 1,2 1,4 4,5 2,0 2,5 and every array movement to a horizontal, diagonal or antidiagonal neighbor moves along an edge of this graph, with the array starting at 0.

Original entry on oeis.org

27, 631, 16323, 426359, 11148439, 291545903, 7624417031, 199391762123, 5214442630935, 136366781617267, 3566229514618067, 93263130563653603, 2438993757290874987, 63783946691623236183, 1668061610819558039475
Offset: 1

Views

Author

R. H. Hardin Mar 21 2013

Keywords

Comments

Column 4 of A223504

Examples

			Some solutions for n=3
..0..1..4..1....0..1..2..1....0..3..5..4....0..3..0..3....0..1..0..3
..4..3..4..3....4..1..4..5....5..3..5..3....4..3..4..1....0..1..4..1
..0..3..0..1....4..5..2..1....0..3..5..2....5..3..0..1....0..3..4..3
		

Formula

Empirical: a(n) = 31*a(n-1) -127*a(n-2) -20*a(n-3) +705*a(n-4) -1027*a(n-5) +499*a(n-6) -60*a(n-7)

A223501 Petersen graph (3,1) coloring a rectangular array: number of nX5 0..5 arrays where 0..5 label nodes of a graph with edges 0,1 0,3 3,5 3,4 1,2 1,4 4,5 2,0 2,5 and every array movement to a horizontal, diagonal or antidiagonal neighbor moves along an edge of this graph, with the array starting at 0.

Original entry on oeis.org

81, 3539, 182901, 9685063, 515473927, 27465794119, 1463848507173, 78024299447333, 4158831849750231, 221674060909378867, 11815685765605683663, 629800688938588467995, 33569692923595929936491, 1789334831509984492336661
Offset: 1

Views

Author

R. H. Hardin Mar 21 2013

Keywords

Comments

Column 5 of A223504

Examples

			Some solutions for n=3
..0..2..0..2..0....0..3..5..3..5....0..3..4..5..3....0..3..0..3..4
..0..2..5..2..5....0..3..5..2..0....0..1..4..5..3....0..3..0..1..4
..5..2..1..2..5....5..2..0..2..1....4..1..2..5..3....4..3..0..1..2
		

Formula

Empirical: a(n) = 80*a(n-1) -1601*a(n-2) +9025*a(n-3) +32750*a(n-4) -458870*a(n-5) +1007560*a(n-6) +2753424*a(n-7) -13680802*a(n-8) +9570798*a(n-9) +33912359*a(n-10) -66671806*a(n-11) +25819908*a(n-12) +31393403*a(n-13) -30099964*a(n-14) +2740719*a(n-15) +5650986*a(n-16) -2070082*a(n-17) -348*a(n-18) +116444*a(n-19) -20740*a(n-20) +1120*a(n-21)

A223502 Petersen graph (3,1) coloring a rectangular array: number of nX6 0..5 arrays where 0..5 label nodes of a graph with edges 0,1 0,3 3,5 3,4 1,2 1,4 4,5 2,0 2,5 and every array movement to a horizontal, diagonal or antidiagonal neighbor moves along an edge of this graph, with the array starting at 0.

Original entry on oeis.org

243, 19759, 2030665, 216562815, 23328902821, 2519813048575, 272386213374733, 29451199763005655, 3184571844145868835, 344356382352508380215, 37236420474777196695869, 4026507614168634996035183
Offset: 1

Views

Author

R. H. Hardin Mar 21 2013

Keywords

Comments

Column 6 of A223504

Examples

			Some solutions for n=3
..0..2..1..0..2..1....0..1..0..1..4..1....0..1..0..3..0..2....0..2..0..3..5..3
..0..2..1..0..2..1....0..3..4..1..4..1....0..1..0..2..0..2....0..2..0..2..5..3
..0..2..1..0..2..0....0..3..4..5..4..1....0..1..0..2..0..3....0..2..0..3..5..3
		

Formula

Empirical: a(n) = 171*a(n-1) -7597*a(n-2) +66978*a(n-3) +2583824*a(n-4) -51950940*a(n-5) -114768696*a(n-6) +9054636698*a(n-7) -36718682736*a(n-8) -634109162555*a(n-9) +4922415752542*a(n-10) +17684952456223*a(n-11) -257017179787974*a(n-12) +44697122178759*a(n-13) +6813950647173658*a(n-14) -14214676649780235*a(n-15) -95256883925367556*a(n-16) +349764223086150739*a(n-17) +638075361803414056*a(n-18) -4132669977915280075*a(n-19) -655758716192007656*a(n-20) +27891199596575003557*a(n-21) -19946115396154900446*a(n-22) -113398578310551386143*a(n-23) +153863761785049382215*a(n-24) +275337771685131610985*a(n-25) -574115913592410065960*a(n-26) -351972189331006256045*a(n-27) +1287605861871487083865*a(n-28) +49832950543007059662*a(n-29) -1835218083346443858712*a(n-30) +584632105931636070627*a(n-31) +1673748635702117796496*a(n-32) -1004898866351611047643*a(n-33) -943485141803302660797*a(n-34) +864920595743414931962*a(n-35) +287374596274394425107*a(n-36) -446718459459833923638*a(n-37) -15289668350134708829*a(n-38) +143310897427441778213*a(n-39) -21277189785541190392*a(n-40) -28130375346377645531*a(n-41) +8130899172562042318*a(n-42) +3152590800552865603*a(n-43) -1415161150801970578*a(n-44) -157323743807361158*a(n-45) +132817713592064303*a(n-46) -2466246093921598*a(n-47) -6544805823376510*a(n-48) +605341636474744*a(n-49) +143100794076816*a(n-50) -20407671803168*a(n-51) -733454285952*a(n-52) +152009496576*a(n-53)

A223503 Petersen graph (3,1) coloring a rectangular array: number of nX7 0..5 arrays where 0..5 label nodes of a graph with edges 0,1 0,3 3,5 3,4 1,2 1,4 4,5 2,0 2,5 and every array movement to a horizontal, diagonal or antidiagonal neighbor moves along an edge of this graph, with the array starting at 0.

Original entry on oeis.org

729, 110427, 22598167, 4867038759, 1065016901935, 234215122981463, 51596648899152901, 11373354088592222347, 2507537188605388269479, 552889843504513864372699, 121910555703890549598868125
Offset: 1

Views

Author

R. H. Hardin Mar 21 2013

Keywords

Comments

Column 7 of A223504

Examples

			Some solutions for n=3
..0..1..0..1..2..5..4....0..1..0..1..0..3..5....0..1..0..1..0..3..4
..0..1..4..1..4..5..4....0..1..4..3..0..2..0....0..1..2..1..4..1..0
..0..1..2..1..4..1..4....0..1..0..1..0..3..0....0..1..4..1..2..1..4
		

A223505 Petersen graph (3,1) coloring a rectangular array: number of 2 X n 0..5 arrays where 0..5 label nodes of a graph with edges 0,1 0,3 3,5 3,4 1,2 1,4 4,5 2,0 2,5 and every array movement to a horizontal, diagonal or antidiagonal neighbor moves along an edge of this graph, with the array starting at 0.

Original entry on oeis.org

6, 19, 115, 631, 3539, 19759, 110427, 617015, 3447747, 19265087, 107648363, 601511175, 3361088979, 18780896143, 104942791931, 586393188311, 3276613524707, 18308869209055, 102305227390859, 571655159691687
Offset: 1

Views

Author

R. H. Hardin, Mar 21 2013

Keywords

Comments

Row 2 of A223504.

Examples

			Some solutions for n=3:
..0..1..0....0..3..0....0..2..0....0..2..1....0..2..1....0..1..4....0..1..0
..0..1..4....5..3..5....5..2..5....1..2..0....0..2..0....4..1..0....2..1..0
		

Crossrefs

Cf. A223504.

Formula

Empirical: a(n) = 5*a(n-1) + 4*a(n-2) - 4*a(n-3) for n>4.
Empirical g.f.: x*(2 - x)*(1 - 2*x)*(3 + 2*x) / (1 - 5*x - 4*x^2 + 4*x^3). - Colin Barker, Aug 21 2018

A223506 Petersen graph (3,1) coloring a rectangular array: number of 3 X n 0..5 arrays where 0..5 label nodes of a graph with edges 0,1 0,3 3,5 3,4 1,2 1,4 4,5 2,0 2,5 and every array movement to a horizontal, diagonal or antidiagonal neighbor moves along an edge of this graph, with the array starting at 0.

Original entry on oeis.org

36, 121, 1519, 16323, 182901, 2030665, 22598167, 251348043, 2795984857, 31101456601, 345963177427, 3848382739711, 42808185822221, 476184598157809, 5296925638013539, 58921311528252323, 655421879453116645
Offset: 1

Views

Author

R. H. Hardin, Mar 21 2013

Keywords

Comments

Row 3 of A223504.

Examples

			Some solutions for n=3:
..0..2..5....0..3..4....0..1..0....0..2..1....0..3..0....0..3..0....0..1..4
..1..2..1....0..3..5....4..1..4....0..2..1....5..2..0....4..1..0....4..3..4
..5..4..1....5..3..5....4..3..0....1..2..1....0..2..5....4..3..0....0..1..0
		

Crossrefs

Cf. A223504.

Formula

Empirical: a(n) = 12*a(n-1) - 4*a(n-2) - 73*a(n-3) + 103*a(n-4) - 23*a(n-5) - 16*a(n-6) + 4*a(n-7) for n>8.
Empirical g.f.: x*(36 - 311*x + 211*x^2 + 1207*x^3 - 1774*x^4 + 397*x^5 + 272*x^6 - 68*x^7) / (1 - 12*x + 4*x^2 + 73*x^3 - 103*x^4 + 23*x^5 + 16*x^6 - 4*x^7). - Colin Barker, Aug 21 2018

A223507 Petersen graph (3,1) coloring a rectangular array: number of 4Xn 0..5 arrays where 0..5 label nodes of a graph with edges 0,1 0,3 3,5 3,4 1,2 1,4 4,5 2,0 2,5 and every array movement to a horizontal, diagonal or antidiagonal neighbor moves along an edge of this graph, with the array starting at 0.

Original entry on oeis.org

216, 771, 20115, 426359, 9685063, 216562815, 4867038759, 109246101385, 2453094910375, 55078160026621, 1236680655855829, 27767207466078683, 623458974380912329, 13998557054872762899, 314310396038821269603
Offset: 1

Views

Author

R. H. Hardin Mar 21 2013

Keywords

Comments

Row 4 of A223504

Examples

			Some solutions for n=3
..0..1..4....0..1..2....0..2..0....0..1..2....0..3..4....0..2..0....0..3..0
..4..1..2....4..1..0....0..2..1....0..1..2....5..3..5....0..2..0....0..3..4
..2..1..4....4..3..4....5..2..0....4..1..2....0..2..5....5..2..5....0..1..4
..4..1..2....0..1..0....1..2..5....4..5..2....5..3..5....0..2..1....2..1..4
		

Formula

Empirical: a(n) = 25*a(n-1) +a(n-2) -1509*a(n-3) +3743*a(n-4) +21956*a(n-5) -87188*a(n-6) -23069*a(n-7) +409623*a(n-8) -235845*a(n-9) -749323*a(n-10) +679813*a(n-11) +599294*a(n-12) -680632*a(n-13) -199246*a(n-14) +294548*a(n-15) +14686*a(n-16) -53558*a(n-17) +3396*a(n-18) +3220*a(n-19) -192*a(n-20) -64*a(n-21) for n>22

A223508 Petersen graph (3,1) coloring a rectangular array: number of 5Xn 0..5 arrays where 0..5 label nodes of a graph with edges 0,1 0,3 3,5 3,4 1,2 1,4 4,5 2,0 2,5 and every array movement to a horizontal, diagonal or antidiagonal neighbor moves along an edge of this graph, with the array starting at 0.

Original entry on oeis.org

1296, 4913, 266419, 11148439, 515473927, 23328902821, 1065016901935, 48530437419865, 2213179954647275, 100913208621796747, 4601629002961862345, 209830596880154645775, 9568174653385280051091, 436303604544116583704607
Offset: 1

Views

Author

R. H. Hardin Mar 21 2013

Keywords

Comments

Row 5 of A223504

Examples

			Some solutions for n=3
..0..2..0....0..2..1....0..1..0....0..1..2....0..2..1....0..1..0....0..1..0
..1..2..1....1..2..5....0..2..0....4..1..0....0..2..0....2..1..4....0..3..4
..1..2..1....0..2..1....1..2..5....2..1..2....0..2..1....2..1..2....4..3..5
..1..2..0....5..2..5....5..2..5....4..5..4....0..2..0....2..5..4....0..3..0
..5..2..1....5..2..5....5..3..5....3..5..4....5..2..0....4..5..4....0..3..4
		

Formula

Empirical: a(n) = 71*a(n-1) -1025*a(n-2) -14582*a(n-3) +432132*a(n-4) -1235038*a(n-5) -44254492*a(n-6) +375953458*a(n-7) +1077097488*a(n-8) -24108628735*a(n-9) +43813966193*a(n-10) +660782580981*a(n-11) -3015474264116*a(n-12) -7468946258468*a(n-13) +72313665742943*a(n-14) -19748204982172*a(n-15) -929976166077118*a(n-16) +1623691507031261*a(n-17) +6877758733216211*a(n-18) -21986547259066956*a(n-19) -25977258135841984*a(n-20) +164780020970184872*a(n-21) -5445523483934936*a(n-22) -789421436773000211*a(n-23) +617827785709579554*a(n-24) +2499061275173634960*a(n-25) -3608966242372275158*a(n-26) -5054385737333805739*a(n-27) +11913328661514326768*a(n-28) +5266973549905528132*a(n-29) -26083920461220425468*a(n-30) +2323512355364237888*a(n-31) +39474091164345616200*a(n-32) -18570564930623297944*a(n-33) -41144392421727062733*a(n-34) +34192277387530560380*a(n-35) +27957670701203653789*a(n-36) -37366923751687843813*a(n-37) -9816688145756259804*a(n-38) +27153007122450867062*a(n-39) -1474941418773154672*a(n-40) -13352938311422813034*a(n-41) +3795826701250077433*a(n-42) +4315925800274009339*a(n-43) -2185410858126306921*a(n-44) -825385995637082366*a(n-45) +704751836109259081*a(n-46) +54959242071750150*a(n-47) -139309166655413192*a(n-48) +12738975912252902*a(n-49) +16584925179127396*a(n-50) -3592712328375964*a(n-51) -1071918437017524*a(n-52) +385473088083924*a(n-53) +24628625488560*a(n-54) -20197202519736*a(n-55) +763271541072*a(n-56) +473574597408*a(n-57) -42448453056*a(n-58) -3476245248*a(n-59) +407586816*a(n-60) for n>61

A223509 Petersen graph (3,1) coloring a rectangular array: number of 6Xn 0..5 arrays where 0..5 label nodes of a graph with edges 0,1 0,3 3,5 3,4 1,2 1,4 4,5 2,0 2,5 and every array movement to a horizontal, diagonal or antidiagonal neighbor moves along an edge of this graph, with the array starting at 0.

Original entry on oeis.org

7776, 31307, 3528715, 291545903, 27465794119, 2519813048575, 234215122981463, 21722081604000233, 2017473470471496373, 187345647840479535879, 17400111813793245517801, 1616059549379820468437485
Offset: 1

Views

Author

R. H. Hardin Mar 21 2013

Keywords

Comments

Row 6 of A223504

Examples

			Some solutions for n=3
..0..1..0....0..1..0....0..1..0....0..1..0....0..1..0....0..1..0....0..1..0
..0..2..0....0..1..2....0..2..0....0..1..0....0..1..2....0..1..0....0..1..4
..0..2..0....2..1..2....1..2..1....2..1..0....0..1..4....2..1..2....2..1..2
..5..3..0....4..5..2....1..2..0....4..1..0....4..1..4....2..1..4....4..5..4
..0..2..5....4..5..2....0..2..1....4..3..4....4..1..4....2..1..2....2..1..2
..1..2..0....4..1..4....1..2..1....4..1..4....0..1..4....4..1..0....2..5..4
		
Showing 1-10 of 12 results. Next