cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A223508 Petersen graph (3,1) coloring a rectangular array: number of 5Xn 0..5 arrays where 0..5 label nodes of a graph with edges 0,1 0,3 3,5 3,4 1,2 1,4 4,5 2,0 2,5 and every array movement to a horizontal, diagonal or antidiagonal neighbor moves along an edge of this graph, with the array starting at 0.

Original entry on oeis.org

1296, 4913, 266419, 11148439, 515473927, 23328902821, 1065016901935, 48530437419865, 2213179954647275, 100913208621796747, 4601629002961862345, 209830596880154645775, 9568174653385280051091, 436303604544116583704607
Offset: 1

Views

Author

R. H. Hardin Mar 21 2013

Keywords

Comments

Row 5 of A223504

Examples

			Some solutions for n=3
..0..2..0....0..2..1....0..1..0....0..1..2....0..2..1....0..1..0....0..1..0
..1..2..1....1..2..5....0..2..0....4..1..0....0..2..0....2..1..4....0..3..4
..1..2..1....0..2..1....1..2..5....2..1..2....0..2..1....2..1..2....4..3..5
..1..2..0....5..2..5....5..2..5....4..5..4....0..2..0....2..5..4....0..3..0
..5..2..1....5..2..5....5..3..5....3..5..4....5..2..0....4..5..4....0..3..4
		

Formula

Empirical: a(n) = 71*a(n-1) -1025*a(n-2) -14582*a(n-3) +432132*a(n-4) -1235038*a(n-5) -44254492*a(n-6) +375953458*a(n-7) +1077097488*a(n-8) -24108628735*a(n-9) +43813966193*a(n-10) +660782580981*a(n-11) -3015474264116*a(n-12) -7468946258468*a(n-13) +72313665742943*a(n-14) -19748204982172*a(n-15) -929976166077118*a(n-16) +1623691507031261*a(n-17) +6877758733216211*a(n-18) -21986547259066956*a(n-19) -25977258135841984*a(n-20) +164780020970184872*a(n-21) -5445523483934936*a(n-22) -789421436773000211*a(n-23) +617827785709579554*a(n-24) +2499061275173634960*a(n-25) -3608966242372275158*a(n-26) -5054385737333805739*a(n-27) +11913328661514326768*a(n-28) +5266973549905528132*a(n-29) -26083920461220425468*a(n-30) +2323512355364237888*a(n-31) +39474091164345616200*a(n-32) -18570564930623297944*a(n-33) -41144392421727062733*a(n-34) +34192277387530560380*a(n-35) +27957670701203653789*a(n-36) -37366923751687843813*a(n-37) -9816688145756259804*a(n-38) +27153007122450867062*a(n-39) -1474941418773154672*a(n-40) -13352938311422813034*a(n-41) +3795826701250077433*a(n-42) +4315925800274009339*a(n-43) -2185410858126306921*a(n-44) -825385995637082366*a(n-45) +704751836109259081*a(n-46) +54959242071750150*a(n-47) -139309166655413192*a(n-48) +12738975912252902*a(n-49) +16584925179127396*a(n-50) -3592712328375964*a(n-51) -1071918437017524*a(n-52) +385473088083924*a(n-53) +24628625488560*a(n-54) -20197202519736*a(n-55) +763271541072*a(n-56) +473574597408*a(n-57) -42448453056*a(n-58) -3476245248*a(n-59) +407586816*a(n-60) for n>61