This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A223511 #14 Jun 22 2018 09:22:47 %S A223511 1,9,1,153,27,1,3825,855,54,1,126225,32895,2745,90,1,5175225,1507815, %T A223511 150930,6705,135,1,253586025,80565975,9205245,499590,13860,189,1, %U A223511 14454403425,4926412575,623675430,39180645,1345050,25578,252,1 %N A223511 Triangle T(n,k) represents the coefficients of (x^9*d/dx)^n, where n=1,2,3,...;generalization of Stirling numbers of second kind A008277, Lah-numbers A008297. %C A223511 Also the Bell transform of A045755(n+1). For the definition of the Bell transform see A264428. - _Peter Luschny_, Jan 29 2016 %e A223511 1; %e A223511 9,1; %e A223511 153,27,1; %e A223511 3825,855,54,1; %e A223511 126225,32895,2745,90,1; %e A223511 5175225,1507815,150930,6705,135,1; %e A223511 253586025,80565975,9205245,499590,13860,189,1; %e A223511 14454403425,4926412575,623675430,39180645,1345050,25578,252,1; %p A223511 b[0]:=g(x): %p A223511 for j from 1 to 10 do %p A223511 b[j]:=simplify(x^9*diff(b[j-1],x$1); %p A223511 end do; %p A223511 # The function BellMatrix is defined in A264428. %p A223511 # Adds (1,0,0,0, ..) as column 0. %p A223511 BellMatrix(n -> mul(8*k+1, k=0..n), 10); # _Peter Luschny_, Jan 29 2016 %t A223511 rows = 8; %t A223511 t = Table[Product[8k+1, {k, 0, n}], {n, 0, rows}]; %t A223511 T[n_, k_] := BellY[n, k, t]; %t A223511 Table[T[n, k], {n, 1, rows}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Jun 22 2018, after _Peter Luschny_ *) %Y A223511 Cf. A008277, A019538, A035342, A035469, A049029, A049385, A092082, A132056, A223512-A223522, A223168-A223172, A223523-A223532. %K A223511 nonn,easy,tabl %O A223511 1,2 %A A223511 _Udita Katugampola_, Mar 23 2013