cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A223525 Triangle S(n,k) by rows: coefficients of 3^((n-1)/2)*(x^(1/3)*d/dx)^n when n=1,3,5,...

This page as a plain text file.
%I A223525 #22 Jan 10 2024 15:59:13
%S A223525 1,4,3,4,24,9,28,252,189,27,280,3360,3780,1080,81,3640,54600,81900,
%T A223525 35100,5265,243,1106560,4979520,5335200,2134080,369360,27702,729,
%U A223525 24344320,127807680,164324160,82162080,18960480,2133054,112266,2187,608608000
%N A223525 Triangle S(n,k) by rows: coefficients of 3^((n-1)/2)*(x^(1/3)*d/dx)^n when n=1,3,5,...
%H A223525 U. N. Katugampola, <a href="http://authors.elsevier.com/a/1QhUNLvMg0Zs~">Mellin Transforms of Generalized Fractional Integrals and Derivatives</a>, Appl. Math. Comput. 257(2015) 566-580.
%H A223525 U. N. Katugampola, <a href="http://arxiv.org/abs/1411.5229">Existence and Uniqueness results for a class of Generalized Fractional Differential Equations</a>, arXiv preprint arXiv:1411.5229, 2014
%e A223525 Triangle begins:
%e A223525 1;
%e A223525 4, 3;
%e A223525 4, 24, 9;,
%e A223525 28, 252, 189, 27;
%e A223525 280, 3360, 3780, 1080, 81;
%e A223525 3640, 54600, 81900, 35100, 5265, 243;
%e A223525 1106560, 4979520, 5335200, 2134080, 369360, 27702, 729;
%e A223525 24344320, 127807680, 164324160, 82162080, 18960480, 2133054, 112266, 2187;
%p A223525 a[0]:= f(x):
%p A223525 for i from 1 to 20 do
%p A223525 a[i] := simplify(3^((i+1)mod 2)*x^(((i+1)mod 2+1)/3)*(diff(a[i-1],x$1 )));
%p A223525 end do:
%p A223525 for j from 1 to 10 do
%p A223525 b[j]:=a[2j-1];
%p A223525 end do;
%Y A223525 Odd rows of A223169.
%Y A223525 Cf. A223168-A223172, A223511-A223532.
%K A223525 nonn,tabl
%O A223525 1,2
%A A223525 _Udita Katugampola_, Mar 18 2013