cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A223530 Triangle S(n,k) by rows: coefficients of 5^(n/2)*(x^(4/5)*d/dx)^n when n=0,2,4,6,...

This page as a plain text file.
%I A223530 #22 Aug 14 2015 21:15:46
%S A223530 1,1,5,6,60,25,66,990,825,125,1056,21120,26400,8000,625,22176,554400,
%T A223530 924000,420000,65625,3125,576576,17297280,36036000,21840000,5118750,
%U A223530 487500,15625,17873856,625584960,1563962400,1184820000,370256250,52893750,3390625,78125
%N A223530 Triangle S(n,k) by rows: coefficients of 5^(n/2)*(x^(4/5)*d/dx)^n when n=0,2,4,6,...
%H A223530 U. N. Katugampola, <a href="http://authors.elsevier.com/a/1QhUNLvMg0Zs~">Mellin Transforms of Generalized Fractional Integrals and Derivatives</a>, Appl. Math. Comput. 257(2015) 566-580.
%H A223530 U. N. Katugampola, <a href="http://arxiv.org/abs/1411.5229">Existence and Uniqueness results for a class of Generalized Fractional Differential Equations</a>, arXiv preprint arXiv:1411.5229, 2014
%e A223530 Triangle begins:
%e A223530 1;
%e A223530 1, 5;
%e A223530 6, 60, 25;
%e A223530 66, 990, 825, 125;
%e A223530 1056, 21120, 26400, 8000, 625;
%e A223530 22176, 554400, 924000, 420000, 65625, 3125;
%e A223530 576576, 17297280, 36036000, 21840000, 5118750, 487500, 15625;
%e A223530 17873856, 625584960, 1563962400, 1184820000, 370256250, 52893750, 3390625, 78125;
%p A223530 a[0]:= f(x):
%p A223530 for i from 1 to 20 do
%p A223530 a[i] := simplify(5^((i+1)mod 2)*x^((3((i+1)mod 2)+1)/5)*(diff(a[i-1],x$1 )));
%p A223530 end do:
%p A223530 for j from 1 to 10 do
%p A223530 b[j]:=a[2j];
%p A223530 end do;
%Y A223530 Even rows of A223171.
%Y A223530 Cf. A008277, A019538, A035342, A035469, A049029, A049385, A092082, A132056, A223511-A223522, A223168-A223172, A223523-A223532.
%K A223530 nonn,tabl
%O A223530 1,3
%A A223530 _Udita Katugampola_, Mar 23 2013