This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A223533 #25 Jun 24 2017 01:13:44 %S A223533 1,1,3,-1,9,9,1,-1,18,9,-5,5,15,90,27,35,-35,225,405,81,-105,105,-35, %T A223533 630,567,81,1155,-1155,490,-105,4158,2268,243,15015,-15015,6895,945, %U A223533 -10206,-23814,-8748,-729,75075,-75075,35700,-10675,2835,-945,34020,41310,10935,729 %N A223533 Coefficients of (x^(1/3)*d/dx)^n for positive integer n. %C A223533 These are generalized Stirling numbers. %H A223533 U. N. Katugampola, <a href="http://authors.elsevier.com/a/1QhUNLvMg0Zs~">Mellin Transforms of Generalized Fractional Integrals and Derivatives</a>, Appl. Math. Comput. 257(2015) 566-580. %F A223533 G.f.: exp(((1+2/3*x*y)^(3/2)-1)/x). %e A223533 1; %e A223533 1, 3; %e A223533 -1, 9, 9; %e A223533 1, -1, 18, 9; %e A223533 -5, 5, 15, 90, 27; %e A223533 35, -35, 225, 405, 81; %e A223533 -105, 105, 630, 567, -35, 81; %e A223533 1155, -1155, 630, 4158, 490, 2268, -105, 243; %p A223533 # This will generate the sequence as coefficients of pseudo polynomials %p A223533 # up to a constant multiple. %p A223533 a[0] := f(x): %p A223533 for i to 10 do %p A223533 a[i] := simplify(x^(1/3)*(diff(a[i-1],x$1))) %p A223533 end do; %Y A223533 Cf. A223168-A223172, A223534-A223536. %K A223533 sign,tabl %O A223533 1,3 %A A223533 _Udita Katugampola_, Apr 18 2013