This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A223536 #25 Jun 24 2017 01:11:29 %S A223536 1,1,6,-2,9,8,6,13,36,36,-42,70,-75,180,108,798,-1162,945,-630,1620, %T A223536 648,3192,-4284,3052,-1575,630,-2268,-648,92568,-117684,77588,-35637, %U A223536 12600,-1512,18144,3888,1573656 %N A223536 Coefficients of (x^(1/6)*d/dx)^n for positive integer n. %C A223536 These are generalized Stirling numbers. %H A223536 U. N. Katugampola, <a href="http://authors.elsevier.com/a/1QhUNLvMg0Zs~">Mellin Transforms of Generalized Fractional Integrals and Derivatives</a>, Appl. Math. Comput. 257(2015) 566-580. %F A223536 G.f.: exp(((1+5/6*x*y)^(6/5)-1)/x). %e A223536 1; %e A223536 1, 6; %e A223536 -2, 9, 8; %e A223536 6, 13, 36, 36; %e A223536 -42, 70, -75, 180, 108; %e A223536 798, -1162, 945, -630, 1620, 648; %p A223536 # This will generate the sequence as coefficients of pseudo polynomials %p A223536 # up to a constant multiple. %p A223536 a[0] := f(x): %p A223536 for i to 10 do %p A223536 a[i] := simplify(x^(1/6)*(diff(a[i-1],x$1))) %p A223536 end do; %Y A223536 Cf. A223168-A223172, A223533-A223536. %K A223536 sign,tabl %O A223536 1,3 %A A223536 _Udita Katugampola_, Apr 18 2013