cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A223552 Petersen graph (3,1) coloring a rectangular array: number of n X 4 0..5 arrays where 0..5 label nodes of a graph with edges 0,1 0,3 3,5 3,4 1,2 1,4 4,5 2,0 2,5 and every array movement to a horizontal or antidiagonal neighbor moves along an edge of this graph, with the array starting at 0.

Original entry on oeis.org

27, 1089, 44217, 1795473, 72906921, 2960456193, 120212193177, 4881332621169, 198211242377097, 8048559615522273, 326819564358379641, 13270825184845208913, 538874719548919491177, 21881530298548175795649
Offset: 1

Views

Author

R. H. Hardin, Mar 22 2013

Keywords

Comments

Column 4 of A223556.

Examples

			Some solutions for n=3:
..0..2..0..2....0..1..2..5....0..2..0..2....0..2..1..4....0..1..0..1
..0..1..0..2....2..1..4..5....1..2..0..2....5..4..5..2....2..1..2..1
..4..1..0..2....4..3..4..5....5..3..5..4....5..2..1..0....4..1..4..3
		

Crossrefs

Cf. A223556.

Formula

Empirical: a(n) = 41*a(n-1) - 16*a(n-2).
Conjectures from Colin Barker, Aug 21 2018: (Start)
G.f.: 9*x*(3 - 2*x) / (1 - 41*x + 16*x^2).
a(n) = 3*sqrt(3/11)*2^(-4-n)*((41-7*sqrt(33))^n*(-1+sqrt(33)) + (1+sqrt(33))*(41+7*sqrt(33))^n).
(End)