A223555 Petersen graph (3,1) coloring a rectangular array: number of nX7 0..5 arrays where 0..5 label nodes of a graph with edges 0,1 0,3 3,5 3,4 1,2 1,4 4,5 2,0 2,5 and every array movement to a horizontal or antidiagonal neighbor moves along an edge of this graph, with the array starting at 0.
729, 281763, 116124291, 48435199821, 20248676896077, 8468395670690901, 3541866135681593043, 1481382428937450207651, 619587781032925818024165, 259142468285816914838504985, 108386290103616110374877972691
Offset: 1
Keywords
Examples
Some solutions for n=3 ..0..1..0..3..0..3..4....0..1..0..3..5..4..1....0..1..0..1..0..3..5 ..0..1..0..2..0..3..0....0..1..0..2..1..4..5....0..1..0..2..5..4..1 ..0..3..0..1..4..1..4....0..3..5..2..5..4..3....0..3..0..3..5..2..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = 579*a(n-1) -77474*a(n-2) +4635156*a(n-3) -154699059*a(n-4) +3198735625*a(n-5) -43344055546*a(n-6) +396489063452*a(n-7) -2477765391092*a(n-8) +10544713088920*a(n-9) -29940917775104*a(n-10) +54099319050624*a(n-11) -56116354684928*a(n-12) +25386144890880*a(n-13) for n>15
Comments