A223556 T(n,k)=Petersen graph (3,1) coloring a rectangular array: number of nXk 0..5 arrays where 0..5 label nodes of a graph with edges 0,1 0,3 3,5 3,4 1,2 1,4 4,5 2,0 2,5 and every array movement to a horizontal or antidiagonal neighbor moves along an edge of this graph, with the array starting at 0.
1, 3, 6, 9, 27, 36, 27, 171, 243, 216, 81, 1089, 3249, 2187, 1296, 243, 6939, 44217, 61731, 19683, 7776, 729, 44217, 609309, 1795473, 1172889, 177147, 46656, 2187, 281763, 8410671, 53599905, 72906921, 22284891, 1594323, 279936, 6561, 1795473
Offset: 1
Examples
Some solutions for n=3 k=4 ..0..3..5..2....0..1..4..1....0..2..5..2....0..2..5..2....0..1..2..0 ..5..3..0..1....0..1..0..3....1..2..5..2....5..2..1..4....2..0..1..2 ..4..3..4..3....2..1..4..5....0..2..0..1....1..2..1..2....1..4..5..3
Links
- R. H. Hardin, Table of n, a(n) for n = 1..219
Crossrefs
Formula
Empirical for column k:
k=1: a(n) = 6*a(n-1)
k=2: a(n) = 9*a(n-1)
k=3: a(n) = 19*a(n-1)
k=4: a(n) = 41*a(n-1) -16*a(n-2)
k=5: a(n) = 95*a(n-1) -626*a(n-2) +720*a(n-3) for n>4
k=6: [order 8] for n>9
k=7: [order 13] for n>15
Empirical for row n:
n=1: a(n) = 3*a(n-1)
n=2: a(n) = 7*a(n-1) -4*a(n-2) for n>3
n=3: a(n) = 17*a(n-1) -47*a(n-2) +41*a(n-3) -10*a(n-4) for n>6
n=4: [order 13] for n>16
n=5: [order 41] for n>45
Comments