cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A223559 Petersen graph (3,1) coloring a rectangular array: number of 4Xn 0..5 arrays where 0..5 label nodes of a graph with edges 0,1 0,3 3,5 3,4 1,2 1,4 4,5 2,0 2,5 and every array movement to a horizontal or antidiagonal neighbor moves along an edge of this graph, with the array starting at 0.

Original entry on oeis.org

216, 2187, 61731, 1795473, 53599905, 1609602003, 48435199821, 1458216189189, 43906852932615, 1322067596579721, 39808646082180639, 1198675626234407289, 36093255426614169063, 1086802077561066049509, 32724639445955516294571
Offset: 1

Views

Author

R. H. Hardin Mar 22 2013

Keywords

Comments

Row 4 of A223556

Examples

			Some solutions for n=3
..0..3..5....0..1..2....0..3..4....0..1..0....0..1..4....0..1..4....0..3..5
..5..3..0....4..1..2....0..1..2....4..1..4....4..5..2....4..1..4....5..2..5
..4..1..0....2..5..4....4..1..2....2..5..2....4..5..2....4..1..4....5..4..5
..2..1..4....4..5..4....2..5..2....2..0..3....3..0..2....4..1..0....1..2..5
		

Formula

Empirical: a(n) = 48*a(n-1) -663*a(n-2) +4174*a(n-3) -13683*a(n-4) +22624*a(n-5) -11071*a(n-6) -19190*a(n-7) +27600*a(n-8) -3924*a(n-9) -10466*a(n-10) +4220*a(n-11) +556*a(n-12) -224*a(n-13) for n>16