A223559 Petersen graph (3,1) coloring a rectangular array: number of 4Xn 0..5 arrays where 0..5 label nodes of a graph with edges 0,1 0,3 3,5 3,4 1,2 1,4 4,5 2,0 2,5 and every array movement to a horizontal or antidiagonal neighbor moves along an edge of this graph, with the array starting at 0.
216, 2187, 61731, 1795473, 53599905, 1609602003, 48435199821, 1458216189189, 43906852932615, 1322067596579721, 39808646082180639, 1198675626234407289, 36093255426614169063, 1086802077561066049509, 32724639445955516294571
Offset: 1
Keywords
Examples
Some solutions for n=3 ..0..3..5....0..1..2....0..3..4....0..1..0....0..1..4....0..1..4....0..3..5 ..5..3..0....4..1..2....0..1..2....4..1..4....4..5..2....4..1..4....5..2..5 ..4..1..0....2..5..4....4..1..2....2..5..2....4..5..2....4..1..4....5..4..5 ..2..1..4....4..5..4....2..5..2....2..0..3....3..0..2....4..1..0....1..2..5
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = 48*a(n-1) -663*a(n-2) +4174*a(n-3) -13683*a(n-4) +22624*a(n-5) -11071*a(n-6) -19190*a(n-7) +27600*a(n-8) -3924*a(n-9) -10466*a(n-10) +4220*a(n-11) +556*a(n-12) -224*a(n-13) for n>16
Comments