A223560 Petersen graph (3,1) coloring a rectangular array: number of 5Xn 0..5 arrays where 0..5 label nodes of a graph with edges 0,1 0,3 3,5 3,4 1,2 1,4 4,5 2,0 2,5 and every array movement to a horizontal or antidiagonal neighbor moves along an edge of this graph, with the array starting at 0.
1296, 19683, 1172889, 72906921, 4715559621, 308267930115, 20248676896077, 1332349841732589, 87722782781246325, 5776909246026951831, 380457710460248943159, 25056802652197918165101, 1650241268196778787267997
Offset: 1
Keywords
Examples
Some solutions for n=3 ..0..1..0....0..1..0....0..1..0....0..1..0....0..2..0....0..1..0....0..2..0 ..0..1..4....0..2..5....0..1..0....0..3..0....0..3..4....0..1..2....0..2..1 ..4..5..4....1..2..0....2..1..2....4..3..0....0..1..0....2..1..4....1..4..3 ..2..1..0....0..1..4....2..5..3....0..1..4....4..1..4....4..3..0....1..4..5 ..4..3..5....4..1..0....2..0..3....4..1..2....0..1..0....5..2..0....5..3..5
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = 138*a(n-1) -6973*a(n-2) +184648*a(n-3) -2923158*a(n-4) +28742148*a(n-5) -164862328*a(n-6) +323303482*a(n-7) +2664572505*a(n-8) -23705019366*a(n-9) +69355645652*a(n-10) +70054378686*a(n-11) -1192186614062*a(n-12) +3436488705480*a(n-13) -144865949345*a(n-14) -25285605346206*a(n-15) +67796388682571*a(n-16) -36846019769990*a(n-17) -198206747323771*a(n-18) +539872407671898*a(n-19) -524423165469667*a(n-20) -173098284258962*a(n-21) +1095810256049880*a(n-22) -1391226239663130*a(n-23) +883819140137974*a(n-24) -205123488401360*a(n-25) -109599889287411*a(n-26) +100027213354804*a(n-27) -24361114004738*a(n-28) -4709924309874*a(n-29) +4076735604787*a(n-30) -668752166416*a(n-31) -125749417451*a(n-32) +60592095948*a(n-33) -5244227851*a(n-34) -1102919206*a(n-35) +264396239*a(n-36) -12021054*a(n-37) -1712600*a(n-38) +222192*a(n-39) -8748*a(n-40) +108*a(n-41) for n>45
Comments